Skip to main content Accessibility help
×
Home

Interaction of Hairless, Delta, Enhancer of split and Notch genes of Drosophila melanogaster as expressed in adult morphology

  • Mariitta Siren (a1) and Petter Portin (a1)

Summary

The interaction of three neurogenic loci viz. Delta, Enhancer of split and Notch, and a related gene, Hairless, of Drosophila melanogaster was investigated at the adult morphology level by measuring the effects of the mutations of the three other genes on the expression of the recessive lethal antimorphic Abruptex mutations of the Notch locus. The Abruptex mutations were also coupled in cis or trans with facet-glossy or split mutations of the Notch locus. In some of the experiments, the genotype of the fly was homozygous for either facet-glossy or split mutation or their wild type alleles but heterozygous for the Abruptex. Facet-glossy is located in a large intron of the locus, whereas split is located in the same exon as Abruptex. In all compounds studied, Delta suppressed the expression of Abruptex while Hairless and Enhancer of split enhanced it. The interactions of the four genes studied were allele specific, suggesting an interaction at the protein level. The comparison of the results presented in this study on the interaction of the neurogenic genes with other results on the same subject suggests that the interactions are similar in embryonic and imaginal development.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interaction of Hairless, Delta, Enhancer of split and Notch genes of Drosophila melanogaster as expressed in adult morphology
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interaction of Hairless, Delta, Enhancer of split and Notch genes of Drosophila melanogaster as expressed in adult morphology
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interaction of Hairless, Delta, Enhancer of split and Notch genes of Drosophila melanogaster as expressed in adult morphology
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author.

References

Hide All
Artavanis-Tsakonas, S., Grimwade, B. G., Harrison, R. G., Markopoulou, K., Muskavitch, M. A. T., Schlesinger-Bryant, R., Wharton, K. & Yedvobnick, B. (1984). The Notch locus of Drosophila melanogaster: A molecular analysis. Developmental Genetics 4, 233254.
de la Concha, A., Dietrich, U., Weigel, D. & Campos-Ortega, J. A. (1988). Functional interactions of neurogenic genes of Drosophila melanogaster. Genetics 118, 499508.
Hartley, D. A., Xu, T. & Artavanis-Tsakonas, S. (1987). The embryonic expression of the Notch locus of Drosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the putative protein. The EM BO Journal 6, 34073418.
Kelley, M. R., Kidd, S., Deutsch, W. A. & Young, M. W. (1987). Mutations altering the structure of Epidermal Growth Factor-like coding sequences at the Drosophila Notch locus. Cell 51, 539548.
Kidd, S., Lockett, T. & Young, M. W. (1983). The Notch locus of Drosophila melanogaster. Cell 34, 421433.
Kidd, S., Kelley, M. R. & Young, M. W. (1986). Sequence of the Notch locus of Drosophila melanogaster: Relationship of the encoded protein to mammalian clotting and growth factors. Molecular and Cellular Biology 6, 30943108.
Kidd, S. & Young, M. W. (1986). Transposon-dependent mutant phenotypes at the Notch locus of Drosophila. Nature 232, 8991.
Knust, E., Bremer, K. A., Vässin, H., Ziemer, A., Tepan, U. & Campos-Ortega, J. A. (1987). The Enhancer of split locus and neurogenesis in Drosophila melanogaster. Developmental Biology 122, 262273.
Lehmann, R., Dietrich, U., Jimenez, F. & Campos-Ortega, J. A. (1981). Mutations of early neurogenesis in Drosophila. Wilhelm Roux's Archives of Developmental Biology 190, 226229.
Lehmann, R., Jimenez, F., Dietrich, U. & Campos-Ortega, J. A. (1983). On the phenotype of development of mutants of early neurogenesis in Drosophila melanogaster. Roux's Archives of Developmental Biology 192, 6274.
Lindsley, D. L. & Grell, E. H. (1986). Genetic Variations of Drosophila melanogaster. Washington: Carnegie Institute Publications.
Portin, P. (1981). The antimorphic mode of action of lethal Abruptex alleles of the Notch locus in Drosophila melanogaster. Hereditas 95, 247251.
Poulson, D. F. (1937). Chromosomal deficiencies and embryonic development of Drosophila melanogaster. Proceedings of The National Academy of Sciences of U.S.A. 23, 133137.
Poulson, D. F. (1941). The developmental effects of a series of Notch deficiencies in the X-chromosome of Drosophila melanogaster. Proceedings of the 7th International Congress of Genetics, 240241.
Technau, G. M. & Campos-Ortega, J. A. (1987). Cell autonomy of expression of neurogenic genes of Drosophila melanogaster. Proceedings of The National Academy of Sciences of U.S.A. 84, 45004504.
Vässin, H., Bremer, K. A., Knust, E. & Campos-Ortega, J. A. (1987). The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EM BO Journal 6, 34313440.
Vässin, H., Vielmetter, J. & Campos-Ortega, J. A. (1985). Genetic interactions in early neurogenesis of Drosophila melanogaster. Journal of Neurogenetics 2, 291308.
Welshons, W. J. (1965). Analysis of a gene in Drosophila. Science 150, 11221129.
Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. (1985). Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567581.

Interaction of Hairless, Delta, Enhancer of split and Notch genes of Drosophila melanogaster as expressed in adult morphology

  • Mariitta Siren (a1) and Petter Portin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed