Skip to main content Accessibility help
×
Home

Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines

  • THOMAS H. EHRICH (a1), JANE P. KENNEY-HUNT (a1), L. SUSAN PLETSCHER (a1) and JAMES M. CHEVERUD (a1)

Abstract

Levels of human obesity have increased over the past 20 years worldwide, primarily due to changes in diet and activity levels. Although environmental changes are clearly responsible for the increasing prevalence of obesity, individuals may show genetic variation in their response to an obesogenic environment. Here, we measure genetic variation in response to a high-fat diet in a mouse model, an F16 Advanced Intercross Line derived from the cross of SM/J and LG/J inbred mouse strains. The experimental population was separated by sex and fed either a high-fat (42% of energy from fat) or low-fat (15% of energy from fat) diet. A number of phenotypic traits related to obesity and diabetes such as growth rate, glucose tolerance traits, organ weights and fat pad weights were collected and analysed in addition to serum levels of insulin, free fatty acids, cholesterol and triglycerides. Most traits are different between the sexes and between dietary treatments and for a few traits, including adult growth, fat pad weights, insulin and glucose tolerance, the dietary effect is stronger in one sex than the other. We find that fat pad weights, liver weight, serum insulin levels and adult growth rates are all phenotypically and genetically correlated with one another in both dietary treatments. Critically, these traits have relatively low genetic correlations across environments (average r=0·38). Dietary responses are also genetically correlated across these traits. We found substantial genetic variation in dietary response and low cross environment genetic correlations for traits aligned with adiposity. Therefore, genetic effects for these traits are different depending on the environment an animal is exposed to.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines
      Available formats
      ×

Copyright

Corresponding author

Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines

  • THOMAS H. EHRICH (a1), JANE P. KENNEY-HUNT (a1), L. SUSAN PLETSCHER (a1) and JAMES M. CHEVERUD (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed