Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:31:55.468Z Has data issue: false hasContentIssue false

Genetic and molecular analyses of vgal: a spontaneous and unstable mutation at the vestigial locus in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Claude Bazin*
Affiliation:
Laboratoire de Génétique Quantitative et Moléculaire, Université Paris 7, CNRS URA 693, France
Françoise Lemeunier
Affiliation:
Laboratoire de Biologie et Génétique Evolutives, CNRS UPR 2411–Gif sur Yvette, France
Georges Periquet
Affiliation:
IBEA, Université F Rabelais, CNRS URA 1298–372000 Tours, France
Joël Silber
Affiliation:
Laboratoire de Génétique Quantitative et Moléculaire, Université Paris 7, CNRS URA 693, France
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe herein, a new unstable mutant of the vestigial locus, isolated from a French natural population. From this mutant vestigialalmost (vgal) wild-type flies (vgal+) and extreme vg phenotypes (vge) arose spontaneously without genomic shock. The occurrence of vgal+ or vge alleles depends mostly on the breeding temperature; vgal+ revertants arose principally at low temperature (21 °C) and vge at 28 °C. These events occur mainly in the male germ line and the phenomenon appears to be premeiotic. Our results with in situ hybridization experiments and Southern blots show that the vgal mutation is due to a 2 kb DNA insertion, which is a deleted hobo element. Genetic and molecular analyses show that two distinct events may underly the wild-type revertants. One is the excision of the resident hobo element, the other a further deletion (about 300 bp in the example characterized herein). The vge mutation is probably due to a deletion of vestigial sequences flanking the hobo insertion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Alexandrov, I. D. & Alexandrova, M. V. (1987). A new nw allele and interallelic complementation at the vg locus of Drosophila melanogaster. Drosophila Information Service 66, 1112.Google Scholar
Blackman, R. K., Grimaila, R., Koehler, M. M. D. & Gelbert, W. M. (1987). Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.Google Scholar
Blackman, R. K. & Gelbart, W. M. (1989). The transposable element hobo of Drosophila melanogaster. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 523531. Washington, D.C.: American Society for Microbiology Publications.Google Scholar
Bucheton, A. (1979). Non-mendelian female sterility in D. melanogaster: influence of aging and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93, 131142.CrossRefGoogle Scholar
Bridges, C. B. & Morgan, T. H. (1919). The second chromosome group of mutant characters. Publications of the Carnegie Institution 278, 123304.Google Scholar
Hatzopoulos, P., Monastirioti, M., Yannopoulos, G. & Louis, C. (1987). The instability of TE-like mutation Dp(2:2)GYL of Drosophila melanogaster is intimately associated with the hobo element. EMBO Journal 6, 30913096.CrossRefGoogle Scholar
Hoopes, B. C. & McClure, W. R. (1981). Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Research 9, 54935505.CrossRefGoogle ScholarPubMed
Ish-Horowicz, D., Pinchin, S. M., Schedl, P., Artavanistsakonas, S. & Mirault, M. (1979). Genetic and molecular analysis of the 87A7 and 87C7 heat-inducible loci of D. melanogaster. Cell 18, 13511358.Google Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster. A syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 36, 813883.Google Scholar
Leigh Brown, A. J., Ross, S. J., Alphey, L. S., Flavell, A. J. & Gerasimova, T. (1989). Instability in the ctMR2 strain of Drosophila melanogaster: role of P-element functions and structure of revertants. Molecular and General Genetics 218, 208213.CrossRefGoogle Scholar
Le Menn, A., Silber, J. & Bazin, C. (1987). Hypoxanthine guanine phosphoribosyltransferase activity and resistance to aminopterin in the wild-type and in the vestigial mutant of Drosophila melanogaster during development. Biology of the Cell 59, 1520.Google Scholar
Lindsley, D. L. & Grell, E. M. (1968). Genetic variation of Drosophila melanogaster. Carnegie Institute of Washington Publication No. 627.Google Scholar
Lim, J. K. (1988). Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proceeding of the National Academy of Sciences, USA 85, 91539157.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
Mizrokhi, L. J., Obolenkova, L. A., Primagi, A. F., Ilyin, Y. V. & Gerasimova, Y. I. (1985). The nature of unstable insertion mutations and reversions in the locus cut of Drosophila melanogaster: molecular mechanism of transposition memory. EMBO Journal 4, 37813787.Google Scholar
Ronsseray, S. (1986). P.M. system of hybrid dysgenesis in Drosophila melanogaster: thermic modifications of the cytotype can be detected for several generations. Molecular and General Genetics 205, 2327.Google Scholar
Silber, J. & Goux, J. M. (1978). La variation phenotypique de la série vestigial chez Drosophila melanogaster. Archives de Zoologie Expérimentale et Générale 118, 471480.Google Scholar
Streck, R. D., MacGaffey, J. E. & Beckendorf, S. K. (1986). The structure of hobo transposable element hobo and their site of insertion. EMBO Journals 5, 36153623.Google Scholar
Williams, J. A. & Bell, J. B. (1988). Molecular organization of the vestigial region in Drosophila melanogaster. EMBO Journal 7, 13551363.Google Scholar
Williams, J., Atkin, A. L. & Bell, J. B. (1990). The functional organization of the vestigial locus in Drosophila melanogaster. Molecular and General Genetics 221, 816.Google Scholar
Yannopoulos, G., Stamatis, N., Monastirioti, M. & Louis, C. (1987). hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23·5 MRF. Cell 49, 487495.Google Scholar