Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T04:37:52.764Z Has data issue: false hasContentIssue false

Genetic analysis of amidase mutants of Pseudomonas aeruginosa

Published online by Cambridge University Press:  14 April 2009

Joan L. Betz
Affiliation:
Department of Biochemistry, University College London, Gower Street, London WC1E 6BT
Jane E. Brown
Affiliation:
Department of Biochemistry, University College London, Gower Street, London WC1E 6BT
Patricia H. Clarke
Affiliation:
Department of Biochemistry, University College London, Gower Street, London WC1E 6BT
Martin Day
Affiliation:
Department of Biochemistry, University College London, Gower Street, London WC1E 6BT
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mutants of Pseudomonas aeruginosa, which differed in amide growth phenotype from the wild-type strain, were subjected to genetic analysis using the generalized transducing phage F116. The map order of some mutational sites was determined by 3-factor crosses in which a mutation in the linked regulator gene amiR was used as the outside marker to determine the relative order of mutations in the amidase structural gene amiE. Acetamide-positive transductants were recovered in crosses between amidase-negative strains and strains PhB3(PAC377), V2(PAC353) and V5(PAC356) producing mutant amidases which hydrolyse phenylacetamide and valeramide but not acetamide. Some recombinants carried the mutation amiE16 determining the properties of the mutant B amidase produced by strain B6(PAC351) from which both PhB and V class mutants were derived, while other recombinants produced A amidase determined by the wild-type amiE gene.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers.CrossRefGoogle Scholar
Betz, J. L., Brown, P. R., Smyth, M. J. & Clarke, P. H. (1974). Nature 247, 261264.CrossRefGoogle Scholar
Betz, J. L. & Clarke, P. H. (1972). Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa. Journal of General Microbiology 73, 161174.CrossRefGoogle ScholarPubMed
Brammar, W. J. & Clarke, P. H. (1964). Induction and repression of Pseudomonas aeruginosa amidase. Journal of General Microbiology 37, 307319.CrossRefGoogle ScholarPubMed
Brammar, W. J., Clarke, P. H. & Skinner, A. J. (1967). Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system. Journal of General Microbiology 47, 87102.CrossRefGoogle ScholarPubMed
Brown, J. E. (1969). Regulator and structural gene mutants of Pseudomonas aeruginosa amidase. Ph.D. Thesis, University of London.Google Scholar
Brown, J. E., Brown, P. R. & Clarke, P. H. (1969). Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity. Journal of General Microbiology 57, 273285.CrossRefGoogle ScholarPubMed
Brown, J. E. & Clarke, P. H. (1970). Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide. Journal of General Microbiology 64, 329342.CrossRefGoogle Scholar
Brown, P. R. (1969). Studies on wild-type and mutant amidase proteins from Pseudomonas aeruginosa. Ph. D. Thesis, University of London.Google Scholar
Clarke, P. H. (1970). Advances in Microbial Physiology 4, 179222.CrossRefGoogle Scholar
Farin, F. & Clarke, P. H. (1974). Positive control of amidase synthesis in Pseudomonas aeruginosa. Proceedings of the Society for General Microbiology (in the Press).Google Scholar
Feary, T. W., Williams, B., Calhoun, D. & Walker, T. A. (1969). An analysis of arginine requiring mutants in Pseudomonas aeruginosa. Genetics 62, 673686.CrossRefGoogle ScholarPubMed
Holloway, B. W., Egan, J. B. & Monk, M. (1960). Lysogeny in Pseudomonas aeruginosa. Australian Journal of Experimental Biology and Medical Science 38, 321330.CrossRefGoogle ScholarPubMed
Holloway, B. W., Krishnapillai, V. & Stanisich, V. (1971). Pseudomonas genetics. Annual Review of Genetics 5, 425446.CrossRefGoogle ScholarPubMed
Holloway, B. W., Monk, M., Hodgins, L. & Fargie, B. (1962). Effects of radiation on transduction in Pseudomonas aeruginosa. Virology 18, 8994.CrossRefGoogle ScholarPubMed
Jacob, F. & Wollman, E. L. (1961). In. Sexuality and the Genetics of Bacteria. London: Academic Press.Google Scholar
Kelly, M. & Clarke, P. H. (1962). An inducible amidase produced by a strain of Pseudomonas aeruginosa. Journal of General Microbiology 27, 305316.CrossRefGoogle ScholarPubMed
Lederberg, J. & Lederberg, E. M. (1952). Replica plating and indirect selection of bacterial mutants. Journal of Bacteriology 63, 399406.CrossRefGoogle ScholarPubMed
Mee, B. J. & Lee, B. T. O. (1967). An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55, 709722.CrossRefGoogle ScholarPubMed
Mee, B. J. & Lee, B. T. O. (1969). A map order for His I, one of the genetic regions controllin. histidine biosynthesis in Pseudomonas aeruginosa, using the transducing phage F116 Genetics 62, 687696.CrossRefGoogle Scholar
Skinner, A. J. (1967). Biochemical and genetic studies with Pseudomonas aeruginosa. Ph.D. Thesis, University of London.Google Scholar
Skinner, A. J. & Clarke, P. H. (1968). Acetate and acetamide mutants of Pseudomonas aeruginosa 8602. Journal of General Microbiology 50, 183194.CrossRefGoogle ScholarPubMed
Smyth, P. F. & Clarke, P. H. (1972). Catabolite repression of Pseudomonas aeruginosa amidase. Journal of General Microbiology 73, ix.Google Scholar
Wheelis, M. L. & Ornston, L. N. (1972). Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: Deletion mapping of cat mutations. Journal of Bacteriology 109, 790795.CrossRefGoogle Scholar
Wu, C.-H., Ornston, M. K. & Ornston, L. N. (1972). Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: Two point crosses with a regulatory mutant strain. Journal of Bacteriology 109, 796802.CrossRefGoogle Scholar
Wu, T. T. (1966). A model for the three-point analysis of random general transductions. Genetics 54, 405410.CrossRefGoogle Scholar