Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T11:48:48.078Z Has data issue: false hasContentIssue false

Further evidence for the importance of parental source of the Xce allele in X chromosome inactivation

Published online by Cambridge University Press:  14 April 2009

Deborah J. Fowlis
Affiliation:
Department of Zoology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT
John D. Ansell*
Affiliation:
Department of Zoology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT
H. Spedding Micklem
Affiliation:
Department of Zoology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using mice that were mosaics for both Xce and phosphoglycerate kinase (Pgk-1) alleles, we present further evidence that the parental source of the X chromosome may affect the probability of that X chromosome remaining active. The reciprocal cross differences in PGK-1 activity described here are intermediate between those published previously for other alleles of Xce.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Ansell, J. D. & Micklem, H. S. (1986). Genetic markers for following cell populations. Handbook of Experimental Immunology (ed. Weir, D. M.), vol. 2, 4th edn, ch. 56, Blackwell Scientific Publications, Oxford, London, Edinburgh.Google Scholar
Bucher, T. & Krietsch, W. P. G. (1988). Glycolytic enzymes in genetic research. Advances in Clinical Enzymology 6, 3547.Google Scholar
Cattanach, B. M. (1975). Control of X chromosome inactivation. Annual Review of Genetics 9, 118.CrossRefGoogle Scholar
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse. X chromosome. genetics 57, 331346.Google Scholar
Cattanach, B. M. & Papworth, D. (1981). Controlling elements in the mouse V. Linkage tests with X-linked genes. Genetical Research 38, 5770.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Perez, J. N. & Pollard, C. E. (1970). Controlling elements in the mouse X chromosome. II. Location in the linkage map. Genetical Research 15, 183195.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Pollard, C. E. & Perez, J. N. (1969). Controlling elements in the mouse X chromosome. I. Interaction with the X-linked genes. Genetical Research 14, 223235.Google Scholar
Evans, H. J., Ford, C. E., Lyon, M. F. & Gray, J. (1965). DNA replication and genetic expression in female mice with morphologically distinguishable X chromosomes. Nature 206, 900903.CrossRefGoogle ScholarPubMed
Falconer, D. S., Isaacson, J. H. & Gauld, I. K. (1982). Non-random X chromosome expression in the mouse: difference of reaction to imprinting. Genetical Research 39, 237259.Google Scholar
Fialkow, P. J., Lisker, R., Giblett, E. R. & Zavala, C. (1970). Xg locus: failure to detect inactivation in females with chonic myelocytic leukaemia. Nature 226, 367368.Google Scholar
Forrester, L. M. & Ansell, J. D. (1985). Parental influences on X chromosome expression. Genetical Research 45, 95100.Google Scholar
Frels, W. I., Rossant, J. & Chapman, V. M. (1979). Maternal X chromosome expression in mouse chorionic ectoderm. Developmental Genetics 1, 123132.CrossRefGoogle Scholar
Green, M. C. (1981). Genetic Variants and Strains of the Laboratory Mouse. Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
Johnston, P. G. & Cattanach, B. M. (1981). Controlling elements in the mouse. IV. Evidence of non-random X-inactivation. Genetical Research 37, 151160.CrossRefGoogle ScholarPubMed
Kahan, B. & DeMars, R. (1975). Localized depression on the human inactive X-chromosome in mouse-human cell hybrids. Proceedings of the National Academy of Sciences, USA 72, 15101514.CrossRefGoogle Scholar
Krietsch, W. K. G., Fehlau, M., Renner, P., Bucher, T. & Fundele, R. (1986). Expression of X-linked phosphoglycerate kinase in early mouse embryos homozygous at the Xce locus. Differentiation 31, 5054.Google Scholar
Lyon, M. F. (1962). Sex chromatin and gene action in the mammalian X-chromosome. American Journal of Human Genetics 14, 135148.Google Scholar
Migeon, B. R. (1972). Stability of X-chromosomal inactivation in human somatic cells. Nature 239, 8789.Google Scholar
Migeon, B. R., Shapiro, L. J., Norum, R. A., Mohandas, T., Axelman, J. & Dabova, R. L. (1982). Differential expression of steroid sulphatase locus on action and inactive human X chromosome. Nature 299, 838840.CrossRefGoogle Scholar
Mukherjee, B. B., Mukherjee, A. B. & Mukherjee, A. B. (1970). Is inactivation of the X chromosome in the female mule random? Nature 228, 13211322.Google Scholar
Nielsen, J. T. & Chapman, V. M. (1977). Electrophoretic variation for X-chromosome-linked phosphoglycerate kinase (PGK-1) in the mouse. Genetics 87, 319325.Google Scholar
Papaioannou, V. E. & West, J. D. (1981). Relationship between the parental origin of the X chromosomes, embryonic cell lineage and X chromosome expression in mice. Genetical Research 37, 183197.Google Scholar
Rastan, S. & Cattanach, B. M. (1983). Interaction between the Xce locus and paternal imprinting of the X chromosome in mouse yolk sac endoderm. Nature 303, 635636.Google Scholar
Shapiro, L. J., Mohandas, T., Weiss, R. & Romeo, G. (1979). Non-inactivation of X-chromosome locus in man. Science 204, 12241226.CrossRefGoogle ScholarPubMed
Takagi, N. & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extra-embryonic membranes of the mouse. Nature 256, 640642.CrossRefGoogle ScholarPubMed
West, J. D., Freis, W. I., Chapman, V. M. & Papaioannou, V. E. (1977). Preferential expression of the maternally derived X-chromosome in the mouse yolk sac. Cell 12, 873882.Google Scholar