Skip to main content Accessibility help
×
Home

Information:

  • Access
  • Cited by 43

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population
        Available formats
        ×
Export citation

Abstract

The effect of multi-allelic balancing selection on nucleotide diversity at linked neutral sites was investigated by simulations of subdivided populations. The motivation is to understand the behaviour of self-recognition systems such as the MHC and plant self-incompatibility. For neutral sites, two types of subdivision are present: (1) into demes (connected by migration), and (2) into classes defined by different functional alleles at the selected locus (connected by recombination). Previous theoretical studies of each type of subdivision separately have shown that each increases diversity, and decreases the relative frequencies of low-frequency variants, at neutral sites or loci. We show here that the two types of subdivision act non-additively when sampling is at the whole population level, and that subdivision produces some non-intuitive results. For instance, in highly subdivided populations, genetic diversity at neutral sites may decrease with tighter linkage to a selected locus or site. Another conclusion is that, if there is population subdivision, balancing selection leads to decreased expected FST values for neutral sites linked to the selected locus. Finally, we show that the ability to detect balancing selection by its effects on linked variation, using tests such as Tajima's D, is reduced when genes in a subdivided population are sampled from the total population, rather than within demes.