Skip to main content Accessibility help
×
Home

The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections

  • KATHRYN E. KEMPER (a1) (a2), DAVID L. EMERY (a3), STEPHEN C. BISHOP (a4), HUTTON ODDY (a5), BENJAMIN J. HAYES (a2), SONJA DOMINIK (a6), JOHN M. HENSHALL (a6) and MICHAEL E. GODDARD (a1) (a2)...

Summary

Genetic resistance to gastrointestinal worms is a complex trait of great importance in both livestock and humans. In order to gain insights into the genetic architecture of this trait, a mixed breed population of sheep was artificially infected with Trichostrongylus colubriformis (n=3326) and then Haemonchus contortus (n=2669) to measure faecal worm egg count (WEC). The population was genotyped with the Illumina OvineSNP50 BeadChip and 48 640 single nucleotide polymorphism (SNP) markers passed the quality controls. An independent population of 316 sires of mixed breeds with accurate estimated breeding values for WEC were genotyped for the same SNP to assess the results obtained from the first population. We used principal components from the genomic relationship matrix among genotyped individuals to account for population stratification, and a novel approach to directly account for the sampling error associated with each SNP marker regression. The largest marker effects were estimated to explain an average of 0·48% (T. colubriformis) or 0·08% (H. contortus) of the phenotypic variance in WEC. These effects are small but consistent with results from other complex traits. We also demonstrated that methods which use all markers simultaneously can successfully predict genetic merit for resistance to worms, despite the small effects of individual markers. Correlations of genomic predictions with breeding values of the industry sires reached a maximum of 0·32. We estimate that effective across-breed predictions of genetic merit with multi-breed populations will require an average marker spacing of approximately 10 kbp.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: Faculty of Land and Environment, University of Melbourne, Parkville, Victoria 3010, Australia. Tel: +61 3 9032 7061. Fax: +61 3 9032 7158. e-mail: kathryn.kemper@dpi.vic.gov.au

References

Hide All
Ball, R. D. (2005). Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170, 859873.
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to mutliple testing. Journal of the Royal Society. Series B (Methodological) 57, 289300.
Bishop, S. C. & Morris, C. A. (2007). Genetics of disease resistance in sheep and goats. Small Ruminant Research 70, 4859.
Bishop, S. C. & Woolliams, J. A. (2010). On the genetic interpretation of disease data. PLoS One 5, e8940.
Calus, M. P., Meuwissen, T. H. E., de Roos, A. P. W. & Veerkamp, R. F. (2008). Accuracy of genomic selection using different methods to define haplotypes. Genetics 178, 553561.
Coltman, D. W., Wilson, K., Pilkington, J. G., Stear, M. J. & Pemberton, J. M. (2001). A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122, 571582.
Davies, G., Stear, M. J., Benothman, M., Abuagob, O., Kerr, A., Mitchell, S. & Bishop, S. C. (2006). Quantitative trait loci associated with parasitic infection in Scottish Blackface sheep. Heredity 96, 252258.
Dawkins, R. & Krebs, J. R. (1979). Arms Races between and within Species. Proceedings of the Royal Society of London. Series B. Biological Sciences 205, 489511.
de Roos, A. P. W., Hayes, B. J., Spelman, R. J. & Goddard, M. E. (2008). Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 179, 15031512.
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39, 138.
Dominik, S. (2005). Quantitative trait loci for internal nematode resistance in sheep: a review. Genetics Selection Evolution 37, S83S96.
Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. (2006). ASReml User Guide 2.0. Hemel Hempstead, UK: VSN International Ltd.
Goddard, M. (2009). Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245257.
Goddard, M. E. & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10, 381391.
Goddard, M. E., Wray, N. R., Verbyla, K. & Visscher, P. M. (2009). Estimating effects and making predictions from genome-wide marker data. Statistical Science 24, 514529.
Gonzalez-Recio, O., Gianola, D., Rosa, G., Weigel, K. & Kranis, A. (2009). Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens. Genetics Selection Evolution 41, 3.
Harris, B. L. & Johnson, D. L. (2010). Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. Journal of Dairy Science 93, 12431252.
Hayes, B. J., Bowman, P. J., Chamberlain, A. J. & Goddard, M. E. (2009). Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 92, 433443.
Hayes, B. J. & Goddard, M. E. (2008). Technical note: prediction of breeding values using marker-derived relationship matrices. Journal of Animal Science 86, 20892092.
Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J. & Goddard, M. E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genetics 6, e1001139.
Hayes, B. J., Visscher, P. M., McPartlan, H. C. & Goddard, M. E. (2003). Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Research 13, 635643.
Hill, W. G. & Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38, 226231.
James, P. J. (2006). Genetic alternatives to mulesing and tail docking in sheep: a review. Australian Journal of Experimental Agriculture 46, 118.
Kijas, J. W., Townley, D., Dalrymple, B. P., Heaton, M. P., Maddox, J. F., McGrath, A., Wilson, P., Ingersoll, R. G., McCulloch, R., McWilliam, S., Tang, D., McEwan, J., Cockett, N., Oddy, H., Nicholas, F. W. & Raadsma, H. (2009). A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One 4, e4668.
Kimura, M. (1985). The Neutral Theory of Molecular Evolution. Cambridge, UK: Cambridge University Press.
Kloosterman, A., Parmentier, H. K. & Ploeger, H. W. (1992). Breeding cattle and sheep for resistance to gastrointestinal nematodes. Parasitology Today 8, 330335.
Lander, E. S. & Schork, N. J. (1994). Genetic dissection of complex traits. Science 265, 20372048.
Lanzas, C., Ayscue, P., Ivanek, R. & Gröhn, Y. (2010). Model or meal? Farm animals populations as models for infectious diseases of humans. Nature Reviews Microbiology 8, 139148.
Luo, Z. W. (1998). Detecting linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Heredity 80, 198208.
Lynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates Inc.
MacLeod, I. M., Hayes, B. J., Savin, K. W., Chamberlain, A. J., McPartlan, H. C. & Goddard, M. E. (2010). Power of a genome scan to detect and locate quantitative trait loci in cattle using dense single nucleotide polymorphisms. Journal of Animal Breeding and Genetics 127, 133142.
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., MacKay, T. F. C., McCarroll, S. A. & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature 461, 747753.
Marshall, K., Maddox, J. F., Lee, S. H., Zhang, Y., Kahn, L., Graser, H.-U., Gondro, C., Walkden-Brown, S. W. & van der Werf, J. H. J. (2009). Genetic mapping of quantitative trait loci for resistance to Haemonchus contortus in sheep. Animal Genetics 40, 262272.
Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.
Outteridge, P. M., Andersson, L., Douch, P. G. C., Green, R. S., Gwakisa, P. S., Hohenhaus, M. A., & Mikko, S. (1996). The PCR typing of MHC-DRB genes in the sheep using primers for an intronic microsatellite: application to nematode parasite resistance. Immunology and Cell Biology 74, 330336.
Paterson, S., Wilson, K. & Pemberton, J. M. (1998). Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Sciences, USA 95, 37143719.
Patterson, K. A., McEwan, J. C., Dodds, K. G., Morris, C. A. & Crawford, A. M. (2001). Fine mapping a locus affecting host resistance to internal parasites in sheep. In ‘Biotechnology’ (ed. Jopson, N.), pp. 9194. New Zealand: Queenstown. (Proceedings of the Association for the Advancement of Animal Breeding and Genetics).
Patterson, N., Price, A. L. & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics 2, e190.
Quinnell, R. J. (2003). Genetics of susceptibility to human helminth infection. International Journal for Parasitology 33, 12191231.
R Development Core Team (2007). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Sayers, G. & Sweeney, T. (2005). Gastrointestinal nematode infection in sheep – a review of the alternatives to anthelmintics in parasite control. Animal Health Research Reviews 6, 159171.
Scheet, P. & Stephens, M. A. (2006). A fast and flexible statistical model for large-scale population genotype data: application to inferring missing genotypes and haplotyic phase. American Journal of Human Genetics 78, 629644.
Schwaiger, F. W., Gostomski, D., Stear, M. J., Duncan, J. L., McKellar, Q. A., Epplen, J. T. & Buitkamp, J. (1995). An ovine major histocompatibility complex DRB1 allele is associated with low faecal egg counts following natural, predominately Ostertagia circumcincta infection. International Journal for Parasitology 25, 815822.
Toosi, A., Fernando, R. L. & Dekkers, J. C. M. (2010). Genomic selection in admixed and crossbred populations. Journal of Animal Science 88, 3246.
van Raden, P. M., van Tassell, C. P., Wiggans, G. R., Sonstegaard, T. S., Schnabel, R. D., Taylor, J. F. & Schenkel, F. (2009). Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science 92, 1624.
Wray, N. R., Goddard, M. E. & Visscher, P. M. (2007). Prediction of inficidual genetic risk to disease from genome-wide association studies. Genome Research 17, 15201528.
Xu, S. (2003). Theoretical basis of the Beavis effect. Genetics 165, 22592268.
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., Goddard, M. E. & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics 42, 565569.
Type Description Title
PDF
Supplementary materials

Kemper supplementary material
Figures & table.doc

 PDF (905 KB)
905 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed