## References

Broman, K. W. (2003). Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163, 1169–1175.

Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890.

Deng, W., Chen, H. & Li, Z. (2006). A logistic regression mixture model for interval mapping of genetic trait loci affecting binary phenotypes. Genetics 172, 1349–1358.

Diao, G., Lin, D. Y. & Zou, F. (2004). Mapping quantitative trait loci with censored observations. Genetics 168, 1689–1698.

Fine, J. P., Zou, F. & Yandell, B. S. (2004). Nonparametric estimation of the effects of quantitative trait loci. Biostatistics 5, 501–513.

Hackett, C. A. & Weller, J. I. (1995). Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51, 1252–1263.

Haley, C. S. & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324.

Huang, C.-Y., Qin, J. & Zou, F. (2007). Empirical likelihood-based inference for genetic mixture models. The Canadian Journal of Statistics 34, 563–574.

Jensen, R. C. (1993). Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211.

Jin, C., Fine, J. P. & Yandell, B. S. (2007). A unified semiparametric framework for quantitative trait loci analyses, with application to spike phenotypes. Journal of the American Statistical Association 102, 56–67.

Kao, C.-H., Zeng, Z.-B. & Teasdale, R. D. (1999). Multiple interval mapping for quantitative trait loci. Genetics 152, 1203–1216.

Knott, S. A. & Haley, C. S. (1992). Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genetical Research 60, 139–151.

Kruglyak, L. & Lander, E. S. (1995). A nonparametric approach for mapping quantitative trait loci. Genetics 139, 1421–1428.

Lander, E. S. & Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

Li, W. & Chen, Z. (2009). Multiple interval mapping for quantitative trait loci with a spike in the trait distribution. Genetics 182, 337–342.

Loudet, O., Chaillou, E. S., Camilleri, C., Bouchez, D. & Daniel-Vedele, F. (2002). Bay-0×Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in *Arabidopsis*. Theoretical and Applied Genetics 104, 1172–1184.

Martinez, O. & Curnow, R. N. (1992). Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theoretical and Applied Genetics 85, 480–488.

Moulton, L. H. & Halsey, N. A. (1995). A mixture model with detection limits for regression analyses of antibody response to vaccine. Biometrics 51, 1570–1578.

Moulton, L. H., Curriero, F. C. & Barroso, P. F. (2002). Mixture models for quantitative HIV RNA data. Statistical Methods in Medical Research 11, 317–325.

R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org. Rowe, H. C., Hansen, B. G., Halkier, B. A. & Kliebenstein, D. J. (2008). Biochemical networks and epistasis shape in the *Arabidopsis thaliana* metabolome. Plant Cell 20, 1199–1216.

Satagopan, J. M., Yandell, B. S., Newton, M. A. & Osborn, T. C. (1996). A Bayesian approach to detect quantitative trait loci using Markov Chain Monte Carlo. Genetics 144, 805–816.

Thomson, P. C. (2003). A generalized estimating equations approach to quantitative trait locus detection of non-normal traits. Genetics Selection Evolution 35, 257–280.

Wang, S., Basten, C. J. & Zeng, Z.-B. (2007). Windows QTL Cartographer Version 2.5. Statistical Genetics, North Carolina State University.

Xu, S. & Atchley, W. R. (1996). Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143, 1417–1424.

Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

Zou, F., Fine, J. P. & Yandell, B. S. (2002). On empirical likelihood for a semiparametric mixture model. Biometrika 89, 61–75.