Skip to main content Accessibility help
×
Home

Information:

  • Access
  • Cited by 10

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Comparison of genetic variability and parentage in different ploidy classes of the Japanese oyster Crassostrea gigas
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Comparison of genetic variability and parentage in different ploidy classes of the Japanese oyster Crassostrea gigas
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Comparison of genetic variability and parentage in different ploidy classes of the Japanese oyster Crassostrea gigas
        Available formats
        ×
Export citation

Abstract

Chemical treatments with cytochalasin B were used to induce triploidy in the progeny of a mass fertilization of 3 male and 7 female Crassostrea gigas parents. Triploids were produced either by retention of the first (meiosis I (MI) triploids) or the second (meiosis II (MII) triploids) polar bodies. These animals, together with their diploid siblings, were divided for two experiments. One set was used to compare physiological performance, and the other set deployed to compare growth in two different natural environments. For both experiments, genetic variability in different ploidy classes was estimated using three microsatellite loci and eight allozyme loci. The microsatellite loci were highly polymorphic, allowing independent confirmation of ploidy status and the unambiguous identification of parentage for each oyster. Significant differences in parentage were found between ploidy classes, despite the fact they originated from the same mass fertilization. This indicates that the assumptions of a common genetic background among random samples of animals taken from the same mass fertilization may not be generally valid. Knowledge of parentage also allowed the more accurate scoring of allozyme loci. As expected, triploids were found to be significantly more polymorphic than diploids. However, MI triploids were not significantly more polymorphic than MII triploids. MII triploid genotypes were used to estimate recombination rates between loci and their centromeres. These rates varied between 0·29 and 0·71, indicating only moderate chiasma interference.