Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-20T13:28:37.842Z Has data issue: false hasContentIssue false

Close linkage between albumin and vitamin D binding protein (Gc) loci in chicken: a 300 million year old linkage group

Published online by Cambridge University Press:  14 April 2009

R. K. Juneja
Affiliation:
Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
K. Sandberg
Affiliation:
Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
L. Andersson
Affiliation:
Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
B. Gahne
Affiliation:
Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence for close genetic linkage between the structural loci for serum albumin (Alb) and serum vitamin D binding protein (Gc) in chicken is presented. The results are based on a study of a single sire family comprising 36 informative offspring. No recombinants have been observed. It is concluded that this linkage in the chicken is homologous to the close linkage of the albumin and Gc loci reported in man and the horse. Thus, this linkage group has most probably been conserved for at least 300 million years.

Type
Short Papers
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Baker, C. M. A., Croizier, G., Stratil, A. & Manwell, C. (1970). Identity and nomenclature of some protein polymorphisms of chicken eggs and sera. Advances in Genetics 15, 147174.CrossRefGoogle ScholarPubMed
Bouillion, R., Van Baelen, H., Tan, B. K. & De Moor, P. (1980). The isolation and characterization of the 25-hydroxyvitamin D-binding protein from chick serum. Journal of Biological Chemistry 255, 1092510930.CrossRefGoogle Scholar
Bouillion, R., Van Baelen, H. & De Moor, P. (1980). Comparative study of the affinity of the serum vitamin D-binding protein. Journal of Steroid Biochemistry 13, 10291034.CrossRefGoogle Scholar
Dizik, M. & Elliott, R. W. (1977). A gene determining the extent of sialysation of lysosomal α–mannosidase in mouse liver. Biochemical Genetics 15, 3146.CrossRefGoogle Scholar
Etches, R. J. & Hawes, R. O. (1979). Genes demonstrating independent segregation in chicken. In Inbred and Genetically Defined Strains of Laboratory Animals, vol. III, part 2 (ed. Altman, P. L. and Katz, D. D.), pp. 628640. Federation of American Society of Experimental Biology. Bethesda, Maryland, U.S.A.Google Scholar
Gahne, B. (1966). Studies on the inheritance of electrophoretic forms of transferrins, albumins, prealbumins and plasma esterases of horses. Genetics 53, 681694.Google Scholar
Ingram, R. S., Scott, R. W. & Tilghman, S. M. (1981). α–Fetoprotein and albumin genes are in tandem in the mouse genome. Proceedings of the National Academy of Sciences, U.S.A. 78, 46944698.Google Scholar
Jarvik, E. (1980). Basic structure, and evolution of vertebrates. Vol. I. New York: Academic Press.Google Scholar
Juneja, R. K., Gahne, B., Kuryl, J. & Gasparska, J. (1982). Genetic polymorphism of the vitamin D binding protein and a pre-transferrin in chicken plasma. Hereditas 96, 8996.CrossRefGoogle Scholar
Lindgren, J., Vaheri, A. & Ruoslahti, E. (1974). Identification and isolation of a fetoprotein in the chicken. Differentiation 2, 233236.Google Scholar
Lundin, L. G. (1979). Evolutionary conservation of large chromosomal segments reflected in mammalian gene maps. Clinical Genetics 16, 7281.Google Scholar
McIndoe, W. M. (1962). Occurrence of two plasma albumins in the domestic fowl. Nature 195, 353354.CrossRefGoogle Scholar
Minna, J. D., Lalley, P. A. & Francke, U. (1976). Comparative mapping using somatic cell hybrids. In Vitro 12, 726733.CrossRefGoogle ScholarPubMed
Morizot, D. C., Wright, D. A. & Siciliano, M. J. (1977). Three linked enzyme loci in fishes: Implications in the evolution of vertebrate chromosomes. Genetics 86, 645656.Google Scholar
Ohno, S. (1973). Ancient linkage groups and frozen accidents. Nature 244, 259262.Google Scholar
Peters, T. (1975). Serum albumin. In The Plasma Proteins, vol. i, (ed. Putnam, F. W.), pp. 133181. New York: Academic Press.CrossRefGoogle Scholar
Sandberg, K. & Juneja, R. K. (1978). Close linkage between the albumin and Gc loci in the horse. Animal Blood Groups and Biochemical Genetics 9, 169173.CrossRefGoogle ScholarPubMed
Searle, A. G. (1981). Comparative and historical aspects of the mouse genome. Symposia of the Zoological Society of London 47, 6384.Google Scholar
Somes, R. G. Jr. (1979). Mapped and unmapped linkage relationships in chicken. In Inbred and Genetically Defined Strains of Laboratory Animals, vol. III, part 2 (ed. Altman, P. L. and Katz, D. D.), pp. 622627. Federation of American Society of Experimental Biology. Bethesda, Maryland, U.S.A.Google Scholar
Weitkamp, L. R. & Allen, P. Z. (1979). Evolutionary conservation of equine Gc alleles and of mammalian Gc/albumin linkage. Genetics 92, 13471354.CrossRefGoogle ScholarPubMed
Weitkamp, L. R., Renwick, J. H., Berger, J., Shreffler, D. C., Drachmann, O., Wuhrmann, F., Braend, M. & Franglen, G. (1970). Additional data and summary for albumin-Gc linkage in man. Human Heredity 20, 17.CrossRefGoogle Scholar
Weitkamp, L. R., Rucknagel, D. L. & Gershowitz, H. (1966). Genetic linkage between the structural loci for albumin and group-specific component (Gc). American Journal of Human Genetics 18, 559571.Google Scholar