Skip to main content Accessibility help
×
Home

Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination

  • Lotfi Naser (a1), Vahdati Kourosh (a1), Kholdebarin Bahman (a2) and Amiri Reza (a3)

Abstract

Introduction. Drought stress is the major factor affecting growth, development and production of walnut trees. In Iran, approximately 33 Mha of land is affected by salinization and drought stress. Finding genetic resources tolerant to drought stress at different growth stages is important for such semi-arid regions. Our aim was to understand better the adaptive mechanisms that enable different genotypes of walnut population to survive under drought stress, and to provide some useful clues for walnut tree breeding toward improved drought tolerance with utilization of existing drought-tolerant genetic resources. Materials and methods. To study the mechanism(s) involved in drought tolerance of some Persian walnut genotypes, drought stress was induced using polyethylene glycol-6000 to produce water potentials of 0 Mpa (control), –0.10 MPa, –0.50 MPa, –0.75 MPa, –1.00 MPa, –1.50 MPa and –2.00 MPa. The amount of proline and soluble sugar accumulation in four walnut genotypes (‘Panegine20’, ‘Lara’, ‘Serr’ and ‘Chandler’) were determined after being exposed to the various water potential levels. Results. The rates of seed germination in all genotypes were significantly reduced by low external water potentials. Plants exposed to water stress had a higher amount of soluble sugars in roots and shoots of tolerant genotypes (‘Panegine20’ and ‘Chandler’) and a lower amount of starch in their tissues. These results imply the important roles of soluble sugars as solutes conferring resistance to drought in these genotypes. The free proline levels were also increased in response to drought stress. They were higher in drought-tolerant genotypes than in sensitive ones (‘Lara’ and ‘Serr’). Proline increased more in shoots than in roots. However, the soluble sugar and starch fluctuations were higher in the roots. Conclusion. Our results support a direct correlation between the degree of drought stress and proline content. As a consequence, proline concentrations could be used as a biochemical marker of drought stress level in walnut plants.

Copyright

Corresponding author

* Correspondence and reprints

References

Hide All
[1] Modarres, R. Da Silva, V.P.R., Rainfall trends in arid and semi-arid regions of Iran, J. Arid Environ. 70 (2007) 344355.
[2] Anon., Land degradation in South Asia: its severity, cause and effects upon the people, FAO, World Soil Res. Rep. 78, Rome, Italy, 1994.
[3] Vahdati K., Nursery management and grafting of walnut, Khaniran Publ., Tehran, Iran, 2003.
[4] Fulton A., Buchner R., The effect of water stress on walnut trees growth, productivity and economics, UC Farm Advis. Draft Publ., Tehama Cty., Univ. Calif., U.S.A., Febr. 23, 2006.
[5] Pallardy, S.G. Rhoads, J.L., Morphological adaptations to drought in seedlings of deciduous angiosperms, Can. J. For. Res. 23 (1993) 17661774.
[6] Girona, J., Cohen, M., Rodrigues, I. Mata, M., Walnut seedlings response to different levels of NaCl in irrigation water, Acta Hortic. 311 (1993) 191200.
[7] Scartazza, A., Proietti, S., Moscatello, A. Augusti, A., Effect of water shortage on photosynthesis, growth and storage carbohydrate accumulation in walnut (Juglans regia L.), Acta. Hortic. 544 (2001) 277232.
[8] Rosati, A., Metcalf, S., Buchner, R., Fulton, A. Lampinen, B., Tree water status and gas exchange in walnut under drought, high temperature and vapour pressure deficit, J. Hortic. Sci. Biotech. 81 (2006) 415420.
[9] Cochard, H.L., Coll, L., Roux, X.L. Améglio, T., Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut, Plant Physiol. 128 (2002) 282290.
[10] Lucier, A.A. Hinckley, T. M., Phenology, growth and water relations of irrigated and non-irrigated black walnut, For. Ecol. Manag. 4 (1982) 127142.
[11] Parker, W.C. Pallardy, S.G., Gas exchange during a soil drying cycle in seedlings of four black walnut (Juglans nigra L.) families, Tree Physiol. 9 (1991) 339348.
[12] Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. Somero, G.N., Living with water stress: Evolution of osmolyte system, Science 217 (1982) 12141222.
[13] McCue, K.F. Hanson, A.D., Drought and salt tolerance: Towards understanding and application, Trends Biotech. 8 (1990) 358362.
[14] Samaras Y., Bressan R.A., Csonka L.N., Garcia-Rios M., Paino D’Urzo M., Rhodes D., Proline accumulation during water deficit, in: Smirnoff N. (Ed.), Environment and plant metabolism. Flexibility and acclimation, Bios Scientific Publ., Oxford, UK, 1995., pp. 161–187.
[15] Smirnoff, N. Stewart, G.R., Stress metabolites and their role in coastal plants, Vegetatio 62 (1985) 273278.
[16] Smirnoff, N. Cumbes, Q.J., Hydroxyl radical scavenging activity of compatible solutes, Phytochem. 28 (1989) 10571060.
[17] Hare, P.D. Cress, W.A., Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul. 21 (1997) 79102.
[18] Meier H., Reid J.S.G., Reserve polysaccharides other than starch in higher plants, in: Loewus F.A., Tanner W. (Eds.), Encyclopaedia of plant physiology, New series, Springer- Verlag, Berlin, Ger., 1982.
[19] Prado, F.E., Boero, C., Gallardo, M. Gonzalez, J.A., Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa Willd. seeds, Bot. Bull. Acad. Sin. 41 (2000) 2734.
[20] Finkelstein, R.R. Gibson, S.I., ABA and sugar interactions regulating development: cross-talk or voices in a crowd, Curr. Opin. Plant Biol. 5 (2001) 2632.
[21] Hoekstra, F.A., Golovina, E.A. Buitink, J., Mechanisms of plant desiccation tolerance, Trends Plant Sci. 6 (2001) 431438.
[22] Koch KKoch, K., Carbohydrate-modulated gene expression in plants, Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47 (1996) 509540.
[23] Sheen, J., Zhou, L. Jang, J.C., Sugars as signalling molecules, Curr. Opin. Plant Biol. 2 (1999) 410418.
[24] Smeekens, S Smeekens, S., Sugar-induced signal transduction in plants, Annu. Rev. Plant Biol. 51 (2000) 4981.
[25] Al Hakimi, A., Monneveux, P. Galiba, G., Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T. polonicum into T. durum , J. Genet. Breed. 49 (1995) 237244.
[26] Pandey, R., Agarwal, R.M., Water stress-induced changes in praline contents and nitrate reductase activity in rice under light and dark conditions, Physiol. Mol. Biol. Plants 4 (1998) 5357.
[27] Hohl, M. Peter, S., Water relations of growing maize coleoptiles. Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure, Plant Physiol. 95 (1991) 716722.
[28] Lu, Z. Neumann, P.M., Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition, J. Exp. Bot. 49 (1998) 19451952.
[29] Carpita, N., Sabularse, D., Monfezinos, D., Delmer, D.P., Determination of the pore size of cell walls of living plant cells, Sci. 205 (1979) 11441147.
[30] Verslues, P.E., Ober, E.S. Sharp, R.E., Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions, Plant Physiol. 116 (1998) 14031412.
[31] Lotfi N., Vahdati K., Kholdebarin B., Reza A., Hassani D., Effects of water stress on germination in different provenances of J. regia L. seeds from different bioclimatic zones in Iran, in: Yujin Jung, Proc. 5th Int. Crop Sci. Congr. Exhib., Korean Soc. Crop Sci. Int. Soc. Crop Sci., Jeju, Korea, 2008, p. 194.
[32] Lotfi, N., Vahdati, K., Kholdebarin, B. Najafian Ashrafi, E., Germination, mineral composition, and ion uptake in walnut under salinity conditions, HortScience 44 (2009) 13521357.
[33] Michel, B.E. Kaufmann, M.R., The osmotic potential of polyethylene glycol 6000, Plant Physiol. 51 (1973) 914916.
[34] Vahdati, K. Hoseini, S.H., Introducing an innovative procedure for large commercial seed lots stratification in Persian walnut, Acta Hortic. 705 (2006) 355357.
[35] Turner, N.C Turner, N.C., Techniques and experimental approaches for the measurement of plant water status, Plant Soil. 58 (1981) 339366.
[36] Bates, L.S., Waldron, R.P. Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil. 39 (1973) 205208.
[37] Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. Smith, F., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350356.
[38] Jobson J.D., Applied multivariate data analysis, Vol. II: Categorical and multivariate methods, Springer-Verlag, Berlin, Germany, 1992.
[39] Zhang, X.L., Zang, R.G. Li, C.Y., Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress, Plant Sci. 166 (2004) 791797.
[40] Duan, B.L., Lu, Y.W., Yin, C.Y., Junttila, O. Li, C.Y., Physiological responses to drought and shade in two contrasting Picea asperata populations, Physiol. Plant. 124 (2005) 476484.
[41] Li, C.Y. Wang, K.Y., Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations, For. Ecol. Manag. 179 (2003) 377385.
[42] Berg, L.V.D. Zeng, Y.J., Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000, S. Afr. J. Bot. 72 (2006) 284286.
[43] Verslues, P.E. Sharp, R.E., Proline accumulation in maize primary roots at low water potentials. II Metabolic source of increased proline deposition in the elongation zone, Plant Physiol. 119 (1999) 13491360.
[44] Larher, F., Leport, L., Petrivalsky, M. Chappart, M., Effectors for the osmoinduced proline response in higher plants, Plant Physiol. Biochem. 31 (1993) 911922.
[45] Fischer, C. Höll, W., Food reserves in Scots pine (Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles, Trees 5 (1991) 187195.
[46] Bartels, D. Sunkar, R., Drought and salt tolerance in plants, Crit. Rev. Plant Sci. 24 (2005) 2358.
[47] Chaves, M.M Chaves, M.M., Effects of water deficits on carbon assimilation, J. Exp. Bot. 42 (1991) 116.
[48] Bogeat-Triboulot, M.B., Brosche, M., Renaut, J., Jouve, L., Le Thiec, D., Fayyaz, P., Vinocur, B., Witters, E., Laukens, K., Teichmann, T., Altman, A., Hausman, J.F., Polle, A., Kangasjrvi, J. Dreyer, E., Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions, Plant Physiol. 143 (2007) 876892.
[49] Patakas, A. Noitsakis, B., Leaf age effects on solute accumulation in water-stressed grapevines, Plant Physiol. 158 (2001) 6369.
[50] Kameli, A. Losel, D.M., Carbohydrates and water status in wheat plants under water stress, New Phytol. 125 (1993) 609614.
[51] Delauney, A.J. Verma, D.P.S., Proline biosynthesis and osmoregulation in plants, Plant J. 4 (1993) 215223.
[52] Gibson, S.I Gibson, S.I., Control of plant development and gene expression by sugar signalling, Curr. Opin. Plant Biol. 8 (2005) 93102.
[53] Wang, Z., Quebedeaux, B. Stutte, G.W., Partitioning of [14C] glucose into sorbitol and other carbohydrates in apple under water stress, Aus. J. Plant Physiol. 23 (1996) 245251.

Keywords

Related content

Powered by UNSILO

Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination

  • Lotfi Naser (a1), Vahdati Kourosh (a1), Kholdebarin Bahman (a2) and Amiri Reza (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.