Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-08T20:35:15.388Z Has data issue: false hasContentIssue false

Glucosylated aroma precursors and glucosidase(s) in vanilla bean (Vanilla planifolia G. Jackson)

Published online by Cambridge University Press:  30 June 2006

Éric Odoux*
Affiliation:
Cirad, Département Flhor, UPR Qualité des aliments, TA 50 / PS4, Blvd. la Lironde, Montpellier Cedex 5, F-34398 France
Get access

Abstract

Introduction. The heat treatments applied to vanilla beans (Vanilla planifolia G. Jackson) during processing have various objectives, which include encouraging the hydrolysis of the glucosylated precursors of the aroma components by one (or several) endogenous glucosidase(s). The glucosides of the vanilla bean. Fifteen glucosides have been identified in the green fruit, of which glucovanillin is the most abundant. It can reach concentrations of up to 15% of fruit dry matter about 30 weeks after pollination, and represents the main form of accumulation of vanillin. β-D-glucosidase(s) of the vanilla bean. A β-D-glucosidase from the vanilla bean was purified and characterised. However, several glucosidases may exist and have yet to be studied. The glucosidase activity seems to be very unstable during the heat treatments. This raises questions about the process of glucoside hydrolysis during vanilla curing. Compartmentation between the glucosidase activity and glucosides in the vanilla bean. After various debates, it now appears that glucovanillin and glucosidase activity largely occur in the bean’s placental region. Their respective cellular localisation has yet to be determined. However, numerous elements support the hypothesis that enzymatic hydrolysis is regulated by a cellular compartmentation that differs between enzyme and substrate. Conclusion. A great deal of research work still needs to be conducted on the glucosides and glucosidase(s) of the vanilla bean. It would be particularly interesting to further our understanding of what occurs during the enzymatic hydrolysis of aroma precursors during curing.

Type
Research Article
Copyright
© CIRAD, EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balls A.K., Kevorkian A.G., Arana F.E., Process for curing vanilla beans, United States Patent Office, No. 2274120, USA, 1942, 1 p.
Ansaldi G., Gil G., Le Petit J., Procédé d’obtention d’arôme naturel de vanille par traitement des gousses de vanille verte et arôme obtenu, Brevet, INPI, No. 2634979, France, 1988, 7 p.
Rabak, F., The effect of curing on the aromatic constituents of vanilla beans, J. Ind. Eng. Chem. 8 (1916) 815821. CrossRef
Balls, A.K., Arana, F.E., The curing of vanilla, J. Ind. Eng. Chem. 33 (1941) 10731075. CrossRef
Jones, M.A., Vicente, G.C., Criteria for testing vanilla in relation to killing and curing methods, J. Agric. Res. 78 (1949) 425434.
Jones, M.A., Vicente, G.C., Inactivation and vacuum infiltration of vanilla enzyme systems, J. Agric. Res. 78 (1949) 435444.
Broderick, J.J., A preliminary investigation of the quick curing of vanilla beans, Food Technol. 10 (1956) 188189.
Ranadive A.S., Szkutnica K., Guerrera J.G., Frenkel C., Vanillin biosynthesis in vanilla beans, in: Proc. 9th Int. Congr. Essent. Oils, Singapore, Malaysia, 1983, pp. 147–154.
Hanum T., Changes in vanillin and activity of $\beta$ -glucosidase and oxidases during post harvest processing of vanilla bean (Vanilla planifolia), Bull. Teknol. Ind. Pengan VIII (1997) 46–52.
Jiang, M., Pu, F., Xie, W.-S., Hu, Y.Q., Li, Y., Activity of three enzymes in Vanilla capsule, Acta Bot. Yunnanica 22 (2000) 187190.
Dignum, M.J.W., Kerler, J., Verpoorte, R., $\beta$ -glucosidase and peroxydase stability in crude enzyme extracts from green beans of Vanilla planifolia Andrews, Phytochem. Anal. 12 (2001) 174179. CrossRef
Dignum, M.J.W., Kerler, J., Verpoorte, R., Vanilla curing under laboratory conditions, Food Chem. 79 (2002) 165171. CrossRef
Dignum M., Biochemistry of the processing of vanilla beans, Univ. Leiden, Thesis, Leiden, Nederland, 2002, 103 p.
Havkin-Frenkel, D., French, J.C., Pak, F., Frenkel, C., Inside vanilla: Vanilla planifolia’s botany, curing options and future market prospects, Perfum. Flavor. 30 (2005) 3655.
Pérez-Silva A., Odoux E., Brat P., Ribeyre F., Rodriguez-Jimenes G., Robles-Olvera V., García-Alvarado M. A., Günata Z., GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans, Food Chem. (2006) 99 (4) 728–735.
Röling, W.F.M., Kerler, J., Braster, M., Apriyantono, A., Stam, H., Van Verseveld, H.W., Microorganisms with a taste for vanilla: microbial ecology of traditional Indonesian vanilla curing, Appl. Environ. Microbiol. 67 (2001) 1995-2003. CrossRef
Lecomte, H., Sur la formation du parfum de la vanille, CR Séances Acad. Sci. (Paris) T133 (1901) 745748.
Lecomte, H., Formation de la vanilline dans la vanille, Agric. Prat. Pays Chauds 13 (1913) 314.
Goris, A., Sur la composition chimique des fruits verts de vanille et le mode de formation du parfum de la vanille, CR Acad. Sci. 179 (1924) 7072.
Goris, A., Formation du parfum de la vanille, Ind. Parfum. 2 (1947) 412.
Janot M.M., Formation du parfum de la vanille, in: Bouriquet G. (Eds.), Le vanillier et la vanille dans le monde, Paul Lechevalier, Paris, France, 1954.
Leong, G., Archavlis, A., Derbesy, M., Research on the glucosides fraction of the vanilla bean, J. Essent. Oil Res. 1 (1989) 3341. CrossRef
Leong, G., Uzio, R., Derbesy, M., Synthesis, identification and determination of glucosides present in green vanilla beans (Vanilla fragrans Andrews), Flavour Fragranc. J. 4 (1989) 163167. CrossRef
Leong G., Contribution à l’étude des hétérosides des gousses de vanille vertes, Univ. Marseille III, Thèse, Marseille, France, 1991, 153 p.
Kanisawa T., Tokoro K., Kawahara S., Flavour development in the beans of Vanilla planifolia, in: Kurihara K., Suzuki N., Ogawa H. (Eds.), Proc. Int. Symp., Tokyo, Japan, 1994, pp. 268–270.
Kanisawa, T., Flavor development in vanilla beans, Kouryou 180 (1993) 113123.
Dignum, M.J.W., Van Der Heijden, R., Kerler, J., Winkel, C., Verpoorte, R., Identification of glucosides in green beans of Vanilla planifolia Andrews and kinetics of vanilla $\beta$ -glucosidase, Food Chem. 85 (2004) 199205. CrossRef
Sagrero-Nieves, L., Schwartz, S.J., Phenolic content of Vanilla planifolia as affected by harvest period, J. Food Compos. Analys. 1 (1988) 362365. CrossRef
Brodelius, P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. V. High performance liquid chromatographic analysis of phenolic glycosides and aglycones in developing fruits, Phytochem. Anal. 5 (1994) 2731. CrossRef
Havkin-Frenkel D., Podstolki A., Witkowska E., Molecki P., Mikolajczyk P., Vanillin biosynthetic pathways: an overview, in: Fu T.J., Singh G., Curtis W.R. (Eds.), Plant cell and tissue culture for the production of food ingredients, Kluwer Acad./Plenum Publ., New York, USA, 1999.
Arana, F.E., Action of a $\beta$ -glucosidase in the curing of vanilla, Food Res. 8 (1943) 343351. CrossRef
Brunerie P.M., Procédé d’obtention d’arôme naturel de vanille par traitement enzymatique des gousses de vanille verte et arôme obtenu, Int. Pat. Appl., No. PCT/FR92/00837, France, 1993, 11 p.
Odoux, E., Changes in vanillin and glucovanillin concentrations during the various stages of the process traditionally used for curing Vanilla fragrans beans in Réunion, Fruits 55 (2000) 119125.
Zenk, M.H., Biosynthese of vanillin in Vanilla planifolia Andr., Z. Pflanzenphysiol. 53 (1965) 404414.
Funk, C., Brodelius, P.E., Influence of growth regulators and an elicitor on phenylpropanoid metabolism in suspension cultures of Vanilla planifolia, Phytochem. 29 (1990) 845848. CrossRef
Funk, C., Brodelius, P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. II. Effects of precursor feeding and metabolic inhibitors, Plant Physiol. 94 (1990) 95101. CrossRef
Funk, C., Brodelius, P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. III. Conversion of 4-methoxycinnamic acids into 4-hydroxybenzoic acids, Plant Physiol. 94 (1990) 102108. CrossRef
Funk, C., Brodelius, P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. IV. Induction of vanillic acid formation, Plant Physiol. 99 (1992) 256262. CrossRef
Funk C., Brodelius P.E., Vanilla planifolia Andrews: in vitro biosynthesis of vanillin and other phenylpropanoid derivatives, in: Bajaj Y.P.S. (Ed.), Biotechnology in agriculture and forestry, Springer Verlag, Berlin-Heidelberg, Germany, 1994.
Knorr D., Caster C., Dörneburg H., Dorn R., Gräf S., Havkin-Frenkel D., Podstolski A., Werrman U., Biosynthesis and yield improvement of food ingredients from plant cell and tissue cultures, Food Technol. (1993) 57–63.
Havkin-Frenkel, D., Podstolski, A., Knorr, D., Effect of light on vanillin precursors formation by in vitro cultures of Vanilla planifolia, Plant Cell Tiss. Org. 45 (1996) 133136. CrossRef
Havkin-Frenkel, D., Dorn, R., Leustek, T., Plant tissue culture for production of secondary metabolites, Food Technol. 51 (1997) 5661.
Podstolski, A., Havkin-Frenkel, D., Malinowski, J., Blount, J., Kourteva, G., Dixon, R.A., Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia, Phytochem. 61 (2002) 611620. CrossRef
Pak, F.E., Gropper, S., Dai, W.D., Havkin-Frenkel, D., Belanger, F.C., Characterization of a multifunctional methyltranferase from the orchid Vanilla planifolia, Plant Cell Rep. 22 (2004) 969966. CrossRef
Odoux, E., Chauwin, A., Brillouet, J.M., Purification and characterization of vanilla bean (Vanilla planifolia Andrews) $\beta$ -D-glucosidase, J. Agric. Food Chem. 51 (2003) 31683173. CrossRef
Wild-Altamirano, C., Enzymatic activity during growth of vanilla fruit. 1. Proteinase, glucosidase, peroxidase and polyphenoloxidase, J. Food Sci. 34 (1969) 235238. CrossRef
Heckel, E., De l’action du froid et des anesthésiques sur les feuilles de Angaecum fragrans Thou. (Faham) et sur les gousses vertes de la vanille, C.R. Acad. Sci. (Paris) 151 (1910) 128131.
Odoux E., Contribution à l’étude de l’hydrolyse de la glucovanilline en vanilline dans la « gousse » du vanillier (Vanilla planifolia G. Jackson), Univ. Montpellier II, Thèse, Montpellier, France, 2004, 149 p.
De Lanessan J.-L., Vanille, in: de Lanessan J.-L. (Eds.), Les plantes utiles des colonies françaises, Impr. Natl., Paris, France, 1886.
Joel, D.M., French, J.C., Graft, N., Kourteva, G., Dixon, R.A., Havkin-Frenkel, D., A hairy tissue produces vanillin, Isr. J. Plant Sci. 51 (2003) 157159. CrossRef
Swamy, B.G.L., On the life-history of Vanilla planifolia, Bot. Gaz. 108 (1947) 449456. CrossRef
Odoux, E., Escoute, J., Verdeil, J.L., Brillouet, J.-M., Localization of $\beta$ -D-glucosidase activity and glucovanillin in vanilla bean (Vanilla planifolia Andrews), Ann. Bot. 92 (2003) 437444. CrossRef
Boudet A.M., Alibert A., Marigo G., Vacuoles and tonoplast in the regulation of cellular metabolism, in: Membranes and compartmentation in the regulation of plant functions, Clarendon Press, Oxford, UK, 1984.
Wink, M., Compartmentation of secondary metabolites and xenobiotics in plant vacuoles, Adv. Bot. Res. 25 (1997) 141169. CrossRef
Beckman, C. H., Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol. 57 (2000) 101110. CrossRef
Bartholomew, D.M., Van Dyk, D.E., Cindy Lau, S.-M., O’keefe D.P., Rea P.A., Viitanen P.V., Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates, Plant Physiol. 130 (2002) 15621572. CrossRef