Skip to main content Accessibility help
×
Home

Effect of oligochitosan on development of Colletotrichum musae in vitro and in situ and its role in protection of banana fruits

  • Meng Xiangchun (a1), Tang Yanxia (a1), Zhang Aiyu (a1), Huang Xuemei (a2) and Zhang Zhaoqi (a2)...

Abstract

Introduction. Concerns about the potentially harmful effects of fungicides on human health and the environment encourage the search for alternative treatments for perishable fruit postharvest disease control. To this end, the potential use of oligochitosan as a natural antifungal compound to control postharvest anthracnose caused by Colletotrichum musae was investigated in banana fruits from the Cavendish group (genome AAA). Materials and methods. The influence of oligochitosan on the growth of C. musae was determined in vitro by micrographic analysis, while its in situ antifungal activity was monitored in banana fruits that were artificially injury-inoculated with C. musae; the activities of several defense-related enzymes were measured. Results and discussion. Oligochitosan at (4 and 8) g·L–1 markedly inhibited radial mycelial growth of C. musae in vitro. The scanning electron micrograph of C. musae treated with oligochitosan at inhibitory concentrations showed distortion and thinning of the hyphal wall and reduction in fungus colony diameter. Dipping banana fruits in oligochitosan solution at (5 to 20) g·L–1 significantly reduced the diameter of the anthracnose lesion, and 20 g oligochitosan·L–1 almost reached the same inhibitory effect as 0.5 g·L–1 of Sportak®, a synthetic fungicide. Activities of defense-related enzymes such as phenylalanine ammonia-lyase (PAL), β-1, 3-glucanase (GLU) and chitinase (CHT), but not polyphenol oxidase (PPO), increased in banana fruits treated with 0.5 g oligochitosan·L–1. Conclusion. The inhibitory effect of oligochitosan on anthracnose development is due to the combination of a direct antifungal effect on the pathogen and an indirect effect, whereby the activities of defense-related enzymes in the banana fruit were enhanced. To control anthracnose in harvested bananas, treatment with oligochitosan above 20 g·L–1 may substitute the use of synthetic fungicide.

Copyright

Corresponding author

Correspondence and reprints

References

Hide All
[1] De Costa, D.M.,Erabadupitiya, H.R.U.T., An integrated method to control postharvest diseases of banana using a member of the Burkholderia cepacia complex, Postharvest Biol. Technol. 36 (2005) 3139.
[2] Finlay, A.R.,Brown, A.E., The relative importance of Colletotrichum musae as a crown rot pathogen on Windward Island bananas, Plant Pathol. 42 (1993) 6774.
[3] Khan, S.H.,Aked, J.,Magan, N., Control of the anthracnose pathogen of banana (Colletotrichum musae) using antioxidants alone and in combination with thiabendazole or imazalil, Plant. Pathol. 50 (2001) 601608.
[4] Maqbool, M.,Ali, A.,Alderson, P.G., Effect of cinnamon oil on incidence of anthracnose disease and postharvest quality of bananas during storage, Int. J. Agric. Biol. 12 (2010) 516520.
[5] Eryani, A.A.,Mahmud, T.M.M.,Syed, S.R.,Mohamed, A.R.,Eryani, A.R., Effects of calcium and chitosan treatments on controlling anthracnose and postharvest quality of papaya (Carica papaya L.), Int. J. Agric. Res. 4 (2009) 5368.
[6] Jitareerat, P.,Paumchai, S.,Kanlayanarat, S.,Sangchote, S., Effect of chitosan on ripening, enzymatic activity, and disease development in mango (Mangifera indica) fruit, N. Z. J. Crop Hortic. Sci. 35 (2007) 211218.
[7] Win, N.K.K.,Jitareerat, P.,Kanlayanarat, S.,Sangchote, S., Effects of cinnamon extract, chitosan coating, hot water treatment and their combinations on crown rot disease and quality of banana fruit, Postharvest Biol. Technol. 45 (2007) 333340.
[8] Liu, J.,Tian, S.P.,Meng, X.H.,Xu, Y., Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit, Postharvest Biol. Technol. 4 (2007) 300306.
[9] Han, C.,Zhao, Y.,Leonard, S.W.,Traber, M.G., Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries ( Rubus idaeus), Postharvest Bio. Technol. 33 (2004) 6778.
[10] Bautista-Baños, S.,Hernandez, A.N.,Valle, M.G.,Hernandez, M.,Barka, E.A.,Bosquez, E.,Wilson, C.L., Chitosan as a potential natural compound to control pre and post harvest diseases of horticultural commodities, Crop Prot. 25 (2006) 108118.
[11] Meng, X.,Li, B.,Liu, J.,Tian, S., Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage, Food Chem. 106 (2008) 501508.
[12] Zhao, X.M.,She, X.P.,Du, Y.G.,Liang, X.M., Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco, Pestic. Biochem. Physiol. 87 (2007) 7884.
[13] Liu, H.M.,Cheng, S.H.,Liu, J.,Du, Y.G.,Bai, Z.H.,Du, Y.G., Synthesis of pentasaccharide and heptasaccharide derivatives and their effects on plant growth, J. Agric. Food Chem. 56 (2008) 56345638.
[14] Zhang, M.,Tan, T.,Yuan, H.,Rui, C., Insecticidal and fungicidal activities of chitosan and oligo-chitosan, J. Bioact. Compat. Polym. 18 (2003) 391400.
[15] Meng, X.,Yang, L.,Kennedy, J.F.,Tian, S., Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit, Carbohydr. Polym. 81 (2010) 7075.
[16] Kim, S.K.,Rajapakse, N., Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review, Carbohydr. Polym. 62 (2005) 357368.
[17] Yao, H.J.,Tian, S.P., Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage, Postharvest Biol. Technol. 35 (2005) 253262.
[18] Alvindia, D.G.,Natsuaki, K.T., Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens, Crop Prot. 28 (2009) 236242.
[19] Jullien, A.,Chillet, M.,Malezieux, E., Pre-harvest growth and development, measured as accumulated degree days, determine the post-harvest green life of banana fruit, J. Hortic. Sci. Biotechnol. 83 (2008) 506512.
[20] Lisker, N.,Cohen, L.,Chalutz, E.,Fuchs, Y., Fungal infections suppress ethylene-induced phenylalanine ammonia lyase activity in grapefruits, Physiol. Mol. Plant Pathol. 22 (1983) 331338.
[21] Deepak, S.,Niranjan, S.,Shailasree, S.,Kini, R.K.,Boland, W.,Shetty, H.S.,Mithofer, A., Induction of resistance against downy mildew pathogen in pearl millet by a synthetic jasmonate analogon, Physiol. Mol. Plant Pathol. 71 (2007) 96105.
[22] Zhao, X.M.,She, X.P.,Yu, W.,Liang, X.M.,Du, Y.G., Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in the resistance of tobacco to tobacco mosaic virus, J. Plant Pathol. 89 (2007) 5565.
[23] Kasprzewska, A., Plant chitinases-regulation and function, Cell. Mol. Biol. Lett. 8 (2003) 809824.
[24] Wang, J.,Wang, B.,Jiang, W.,Zhao, Y., Quality and shelf life of mango (Mangifera indica L. cv. Tainong) coated by chitosan and polyphenols, Food Sci. Technol. Int. 13 (2007) 317322.

Keywords

Effect of oligochitosan on development of Colletotrichum musae in vitro and in situ and its role in protection of banana fruits

  • Meng Xiangchun (a1), Tang Yanxia (a1), Zhang Aiyu (a1), Huang Xuemei (a2) and Zhang Zhaoqi (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed