Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T17:18:00.549Z Has data issue: false hasContentIssue false

Effect of chitosan on three isolates of Rhizopus stolonifer obtained from peach, papaya and tomato

Published online by Cambridge University Press:  05 August 2010

Ana N. Hernández-Lauzardo*
Affiliation:
 CEPROBI, Inst. Politéc. Nac., Carretera Yautepec-Jojutla, Km.6, Calle CEPROBI No. 8, Col. San Isidro, CP 62731, Apartado Postal 24, Yautepec,  Morelos, México
Miguel G. Velázquez-del Valle
Affiliation:
 CEPROBI, Inst. Politéc. Nac., Carretera Yautepec-Jojutla, Km.6, Calle CEPROBI No. 8, Col. San Isidro, CP 62731, Apartado Postal 24, Yautepec,  Morelos, México
Leticia Veranza-Castelán
Affiliation:
 Fac. Cienc. Quím., Univ. Autón. Veracruz, Prolong. Oriente 6 No. 1009, Orizaba, Veracruz, México, CP 23456. México
Gloria E. Melo-Giorgana
Affiliation:
 Fac. Cienc. Quím., Univ. Autón. Veracruz, Prolong. Oriente 6 No. 1009, Orizaba, Veracruz, México, CP 23456. México
María G. Guerra-Sánchez
Affiliation:
 ENCB, Inst. Politéc. Nac., Carpio y Plan de Ayala S/N, Col Casco de Sto. Tomás. Del. Miguel Hidalgo, CP 11340, México
*
* Correspondence and reprints
Get access

Abstract

Introduction. Rhizopus stolonifer is the causal agent of Rhizopus rot disease in various fruit and vegetables. Materials and methods. The effect of chitosan was evaluated in vitro on mycelial growth, sporulation, morphological characteristics and germination of spores of three isolates of R. stolonifer (from peach, papaya and tomato). The effect of chitosan on controlling Rhizopus decay in peach, papaya and tomato fruit in situ in comparison with the synthetic fungicide dichloran was also studied. Results and discussion. Our results showed that the mycelial growth and sporulation of the three isolates were markedly inhibited at all tested chitosan concentrations. The highest antifungal indexes and sporulation reduction were observed with chitosan at 2 mg·mL–1. In our study, the morphological characteristics of the spores of R. stolonifer showed different behavior depending on the evaluated isolates. In general, the highest effect on germination was observed at the chitosan concentration of 2 mg·mL–1. Our results demonstrated that chitosan was effective in reducing the percentage of infection and the severity index on peach, papaya and tomato fruit compared with those of non-treated control. The chitosan was not more effective than dichloran in reducing the percentage of infection. The results of the study suggest that chitosan (2 mg·mL–1) is a good alternative for the control of Rhizopus decay on peach, papaya and tomato fruit; it could be considered as a potential agent in natural alternatives to control postharvest diseases.

Type
Original article
Copyright
© 2010 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Echerenwa, M.C., Umechuruba, C.I., Post-harvest fungal diseases of pawpaw (Carica papaya L.) fruits and seeds in Nigeria, Glob. J. Pure Appl. Sci. 10 (2004) 6973.Google Scholar
Stevens, C., Liu, J., Khan, V.A., Lu, J.Y., Kabwe, M.K., Wilson, C.L., The effects of low-dose ultraviolet light-C treatment on polygalacturonase activity delay ripening and Rhizopus soft rot development of tomatoes, Crop Prot. 23 (2004) 551554.CrossRefGoogle Scholar
Zhang, H., Wang, L., Zheng, X, Dong, Y., Effect of yeast antagonist with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches, Int. J. Food Microbiol. 115 (2007) 5358.CrossRefGoogle ScholarPubMed
Bautista-Baños S., Velázquez-del Valle M.G., Hernández-Lauzardo A.N., Ait-Barka E., The Rhizopus stolonifer-Tomato interaction, in: Plant-microbe interaction, Ait-Barka E., Clément C. (Eds.), Res. Signpost, Kerala, India, 2008.
Adaskaveg J.E., Förster H., Sommer N.F., Principles of postharvest pathology and management of decays of edible horticultural crops, in: Kader A. (Ed.), Postharvest Technology of Horticultural Crops, Univ. California, Oakland, USA, 2002.
Northover, J., Zhou, T., Control of Rhizopus rot of peaches with postharvest treatments of tebuconazole, fludioxonil, and Pseudomonas syringae , Can. J. Plant Pathol. 24 (2002) 144153.CrossRefGoogle Scholar
Tripathi, P., Dubey, N.K., Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables, Postharvest Biol. Technol. 32 (2004) 235245.CrossRefGoogle Scholar
Bautista-Baños, S., Hernández-Lauzardo, A.N., Velázquez-del Valle, M.G., Ait-Barka, E., Bósquez-Molina, E., Wilson, C.L., Chitosan as a potential natural compound to control pre and postharvest as a potential natural compound to control pre and postharvest diseases of horticultural commodities, Crop Prot. 25 (2006) 108118.CrossRefGoogle Scholar
Rinaudo, M., Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (2006) 603632.CrossRefGoogle Scholar
Rabea, E.I., Badawy, M.E.I., Stevens, C.V., Smagghe, G., Steurbaut, W., Chitosan as an antimicrobial agent: applications and mode of actions, Biomacromolecules 4 (2003) 14571465.CrossRefGoogle Scholar
El Ghaouth, A., Arul, J., Asselin, A., Benhamou, N., Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer , Mycol. Res. 96 (1992) 769779.CrossRefGoogle Scholar
Zhang, M., Tan, T.W., Insecticidal and fungicidal activities of chitosan and oligo-chitosan, J. Bioact. Compat. Polym. 18 (2003) 391400.CrossRefGoogle Scholar
Xiao-Fang, L., Xiao-Qiang, F., Sheng, Y., Ting-Pu, W., Zhong-Xing, S., Effect of molecular weight and concentration of chitosan on antifungal activity against Aspergillus niger , Iran. Polym. J. 17 (2008) 843852.Google Scholar
Hernández-Lauzardo, A.N., Bautista-Baños, S., Velázquez-del Valle, M.G., Méndez-Montealvo, M.G., Sánchez-Rivera, M.M., Bello-Pérez, L.A., Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill, Carbohydr. Polym. 73 (2008) 541547.CrossRefGoogle ScholarPubMed
Schipper, M.A., A revision of the genus Rhizopus , Stud. Mycol. 25 (1984) 134.Google Scholar
Hernández-Lauzardo, A.N., Bautista-Baños, S., Velázquez-del Valle, M.G., Trejo-Espino, J.L., Identification of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill., causal agent of Rhizopus rot disease of fruits and vegetables, Mex. J. Phytopathol. 24 (2006) 6569.Google Scholar
El Ghaouth, A., Arul, J., Ponnampalam, R., Use of chitosan coating to reduce water loss and maintain quality of cucumbers and bell pepper fruits, J. Food Process. Preserv. 15 (1991) 359368.CrossRefGoogle Scholar
Guo, Z., Chen, Z., Xing, R., Liu, S., Yu, H., Wang, P., Li, C., Li, P., Novel derivatives of chitosan and their antifungal activities in vitro , Carbohydr. Res. 341 (2006) 351354.CrossRefGoogle ScholarPubMed
El Ghaouth, A., Arul, J., Grenier, J., Asselin, A., Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits, Phytopathology 82 (1992) 398402.CrossRefGoogle Scholar
Liu, J., Tian, S., Meng, X., Xu, Y., Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit, Postharvest Biol. Technol. 44 (2007) 300306.CrossRefGoogle Scholar
Badawy, M.E.I., Rabea, E.I., Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit, Postharvest Biol. Technol. 51 (2009) 110117.CrossRefGoogle Scholar
Bautista-Baños, S., Hernández-López, M., Hernández-Lauzardo, A.N., Trejo-Espino, J.L., Bautista-Cerón, M., Melo-Giorgana, G.E., Effect of chitosan on in vitro development and morphology of two isolates of Colletotrichum gloeosporioides (Penz.) Penz. and Sacc, Mex. J. Phytopathol. 23 (2005) 6267.Google Scholar
Palma-Guerrero, J., Jansson, H.-B., Salinas, J., Lopez-Llorca, L.V., Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi, J. Appl. Microbiol. 104 (2008) 541553.Google ScholarPubMed
Li, H, Yu, T., Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit, J. Sci. Food Agric. 81 (2001) 269274.3.0.CO;2-F>CrossRefGoogle Scholar
González-Aguilar, G.A., Valenzuela-Soto, E., Lizardi-Mendoza, J., Goycoolea, F., Martínez-Tellez, M.A., Villegas-Ochoa, M.A., Monroy-García, I., Ayala-Zavala, J.F., Effect of chitosan coating in preventing deterioration and preserving the quality of fresh-cut papaya Maradol, J. Sci. Food Agric. 89 (2009) 1523.CrossRefGoogle Scholar
Bautista-Baños, S., Hernández-López, M., Bosquez-Molina, E., Wilson C.L. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit, Crop Prot. 22 (2003) 10871092.CrossRefGoogle Scholar
Santos, C.A., De Castro, J.V., Picoli, A.A., Rolim, G.D., Effects of chitosan and film packaging on quality of peaches after cold storage, Rev. Bras. Frutic. 30 (2008) 8893.CrossRefGoogle Scholar
Kittur, F.S., Saroja, N., Habibunnisa, , Tharanathan, R.N., Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango, Eur. Food Res. Technol. 213 (2001) 306311.CrossRefGoogle Scholar
Jiang, Y.M., Li, Y.B., Effect of chitosan coating on postharvest life and quality of longan fruit, Food Chem. 73 (2001) 139143.CrossRefGoogle Scholar
Hernández-Muñoz, P., Almenar, E., Del Valle, V., Velez, D., Gavara, R., Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage, Food Chem. 110 (2008) 428435.CrossRefGoogle Scholar