Skip to main content Accessibility help
×
Home

Anatomy, histochemistry and biochemistry of glucovanillin, oleoresin and mucilage accumulation sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): a comprehensive and critical reexamination

  • Eric Odoux (a1) and Jean-Marc Brillouet (a1)

Abstract

Introduction. Mature green vanilla pods accumulate 4-O-(3-methoxy-benzaldehyde)-β-D-glucoside (glucovanillin), which, upon hydrolysis by an endogenous β-glucosidase, liberates vanillin, the major aroma component of vanilla. Sites of storage of glucovanillin in the pod have been controversially reported for decades; we aim, using precise and widely accepted technical terminology, to clarify this controversy by providing an anatomical, histochemical and biochemical evidence-based picture of glucovanillin accumulation sites. The pod also synthesizes an oleoresin and a mucilage of unknown constitutions; we report here their localization and structures. Materials and methods. The pod anatomy was examined by light and epifluorescence microscopy. A protocol was established allowing fine hand-dissection of diverse anatomical parts of the pod (mesocarp, placentae, trichomes, intralocular interstitial cell-free region and seeds). Glucovanillin and γ-pyranones were extracted and analyzed by HPLC, while the structures of the mucilaginous polysaccharides were determined after permethylation. Results and discussion. Glucovanillin is essentially stored in the placentae (92%) and marginally in trichomes (7%); traces were measured in the mesocarp and intralocular interstitial cell-free medium. Trichomes store massive amounts of a fluorescing oleoresin (44%) rich in alkenylmethyldihydro-γ-pyranones and synthesize a mucilage made of a glucomannan and a pectic polysaccharide carrying monomeric arabinose and galactose side-chains. Conclusion. To date, the physiological roles of glucovanillin, long-chain pyranones, and mucilage remain unknown.

Copyright

Corresponding author

References

Hide All
[1] Cameron K., Biogeography of Vanilloideae (Orchidaceae). 16th International Botanical Congress (abstract), St. Louis, Missouri, USA, 1–7 August, 1999.
[2] Portères R., Le genre Vanilla et ses espèces, in: Bouriquet G. (Ed.), Le vanillier et la vanille dans le monde, Lechevalier, Paris, France, 1954, pp. 94-290.
[3] Sotos-Arenas M.A., Vanilla, in: Pridgeon A.M., Cribb P.J., Chase M.W., Ramunsen F.N. (Eds.), Genera Orchidacearum, Oxford Univ. Press, UK, 2003, pp. 321–334.
[4] Stern, W.L., Judd, W.S., Comparative vegetative anatomy and systematics of Vanilla (Orchidaceae), Bot. J. Linn. Soc. 131 (1999) 353382.
[5] Swamy, B.G.L., On the life history of Vanilla planifolia, Bot. Gaz. 108 (1947) 449456.
[6] Cameron K.M., Recent advances in the systematic biology of vanilla and related orchids (Orchidaceae: subfamily Vanilloideae), in: Proc. Vanilla, First Int. Cong., Princeton, USA, Carol Stream, Allured Publ. Corp., USA, 2005, pp. 89–93.
[7] Havkin-Frenkel, D., French, J.C., Pak, F., Frenkel, C., Inside vanilla: Vanilla planifolia’s botany, curing options and future market prospects, Perfum. Flavour. 30 (2005) 3655.
[8] De Lanessan J.-L., Vanille, in: De Lanessan J-L. (Ed.), Les plantes utiles des colonies françaises, Impr. Natl., Paris, France, 1886, pp. 62–74.
[9] Roux P., Études morphologiques et anatomiques dans le genre Vanilla, in: Bouriquet G. (Ed.), Le vanillier et la vanille dans le monde, Lechevalier, Paris, France, 1954, pp. 44–92.
[10] Odoux, E., Escoute, J., Verdeil, J.-L., Brillouet, J.-M., Localization of $\beta$ -glucosidase activity and glucovanillin in vanilla bean (Vanilla planifolia Andrews), Ann. Bot. 92 (2003) 437444.
[11] French J.C., Development of vanilla-bearing placental trichomes, in: Proc. Vanilla, First Int. Cong., Princeton, USA, Carol Stream, Allured Publ. Corp., USA, 2005, pp. 71–77.
[12] Ramaroson-Raonizafinimanana, B., Gaydou, E.M., Bombarda, I., Long-chain $\gamma$ -pyrones in epicuticular wax of two vanilla bean species: V. fragrans and V. tahitensis, J. Agric. Food Chem. 47 (1999) 32023205.
[13] Podstolski, A., Havkin-Frenkel, D., Malinowski, J., Blount, J.W., Kourteva, G., Dixon, R.A., Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia, Phytochem. 61 (2002) 611620.
[14] Odoux, E., Chauwin, A., Brillouet, J.-M., Purification and characterization of vanilla bean (Vanilla planifolia Andrews) $\beta$ -D-glucosidase, J. Agric. Food Chem. 51 (2003) 31683173.
[15] Havkin-Frenkel D., Belanger F.C., Application of metabolic engineering to vanillin biosynthetic pathways in Vanilla planifolia, in: Verpoorte R. (Ed.), Applications of plant metabolic engineering, Springer, Germany, 2007, pp. 175–196.
[16] Pak, F.E., Gropper, S., Dai, W.D., Havkin- Frenkel, D., Belanger, F.C., Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia, Plant Cell Rep. 22 (2004) 959966.
[17] Li, H.M., Rotter, D., Hartmann, T.G., Pak, F.E., Havkin-Frenkel, D., Belanger, F., Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase, Plant Mol. Biol. 61 (2006) 537552.
[18] Joel, D.M., French, J.C., Graft, N., Kourteva, G., Dixon, R.A., Havkin-Frenkel, D., A hairy tissue produces vanillin, Isr. J. Plant Sci. 51 (2003) 157159.
[19] Arana, F.E., Action of a $\beta$ -glucosidase in the curing of vanilla, Food Res. 288 (1943) 343351.
[20] Jones, M.A., Vicente, G.C., Criteria for testing vanilla in relation to killing and curing methods, J. Agric. Res. 78 (1949) 425434.
[21] Odoux, E., Escoute, J., Verdeil, J.-L., The relation between glucovanillin, $\beta$ -glucosidase activity and cellular compartmentation during the senescence, freezing and traditional curing of vanilla beans, Ann. Appl. Biol. 149 (2006) 4352.
[22] Márquez, O., Waliszewski, K.N., The effect of thermal treatment on $\beta$ -glucosidase inactivation in vanilla bean (Vanilla planifolia Andrews), Int. J. Food Sci. Technol. 43 (2008) 19931999.
[23] Siebert, M., Sommer, S., Li, S.-M., Wang, Z.-X., Severin, K., Heide, L., Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco, Plant Physiol. 112 (1996) 811819.
[24] Flammarion C., Oléo-résine, in: Flammarion E. (Ed.), Dictionnaire encyclopédique universel, Lahure, Paris, France, 1902, pp. 49.
[25] Maestro Y., Bergia D., Lasserre C., Vanilla planifolia extract, method for obtaining same, and cosmetic or dermatological composition containing same, World Pat. WO 2007/ 034042 A2, 2007.
[26] Webb, M.C., Williams, E.G., The pollen tube pathway in the pistil of Lycopersicon peruvianum, Ann. Bot. 61 (1988) 414423.
[27] Perez Silva A., Contribution à l’étude de la genèse des composés d’arôme au cours du procédé mexicain de transformation de la vanille (Vanilla planifolia Jackson), PhD Thesis, Univ. Montpellier II, France, 2006.
[28] Brundrett, M.C., Kendrick, B., Peterson, C.A., Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol, Biotech. Histochem. 66 (1991) 111116.
[29] Odoux, E., Changes in vanillin and glucovanillin concentrations during the various stages of the process traditionally used for curing Vanilla fragrans in Réunion, Fruits 55 (2000) 119125.
[30] Huber, D.J., Acidified phenol alters tomato cell wall pectin solubility and calcium content, Phytochem. 30 (1991) 25232527.
[31] Albersheim, P., Nevins, D.J., English, P.D., Karr, A., A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography, Carbohydr. Res. 5 (1967) 340345.
[32] Harris, P.L., Henry, R.L., Blakeney, A.B., Stone, B.A., An improved procedure for the methylation analysis of oligosaccharides and polysaccharides, Carbohydr. Res. 127 (1984) 5973.
[33] Blumenkrantz, N., Asboe-Hansen, G., New method for determination of uronic acids, Anal. Biochem. 54 (1973) 484489.
[34] Brillouet, J.-M., Williams, P., Will, F., Müller, G., Pellerin, P., Structural characterization of an apple juice arabinogalactan-protein which aggregates following enzymic dearabinosylation, Carbohydr. Polym. 29 (1996) 271275.
[35] Hakomori, S.I., A rapid permethylation of glycolipids and polysaccharides catalysed by methyl sulfinyl carbanion in dimethyl sulfoxide, J. Biochem. (Tokyo) 55 (1964) 205208.
[36] Pellerin, P., Doco, T., Vidal, S., Williams, P., Brillouet, J.-M., O’Neill M.A., Structural characterization of red wine rhamnogalacturonan II, Carbohydr Res. 290 (1996) 183197.
[37] Havkin-Frenkel D., Podstolski A., Vanillin production, US Patent US 2007/ 0044174 A1, 2007.
[38] Michodjehoun-Mestres, L., Amraoui, W., Brillouet, J.-M., Isolation, characterization, and determination of 1-O-trans-cinnamoyl- $\beta$ -D-glucopyranose in the epidermis and flesh of developing cashew apple (Anacardium occidentale L.) and four of its genotypes, J. Agric. Food Chem. 57 (2009) 13771382.
[39] Mangin A., Les vanilliers, in: Mame A. & sons (Eds.), Les plantes utiles, Tours, France, 1886, pp. 134–141.
[40] Angeles, G., Berrio-Sierra, J., Joseleau, J.-P., Lorimier, P., Lefèbvre, A., Ruel, K., Preparative laser capture microdissection and single-pot cell wall material preparation: a novel method for tissue-specific analysis, Planta 224 (2006) 228232.
[41] Ishikawa, H., Kuwano, A., Matsumoto, K., Complexation of vanillin and ethylvanillin with $\alpha$ -, $\beta$ -, and $\gamma$ -cyclodextrin, J. Fac. Agric. Kyushu Univ. 52 (2007) 8790.
[42] Sircar, D., Mitra, A., Evidence for p-hydroxybenzoate formation involving enzymatic phenylpropanoid side-chain cleavage in hairy roots of Daucus carota, J. Plant Physiol. 165 (2008) 407414.
[43] Dalmer, M., Ueber die Leitung der Pollenschlauche bei den Angiosperm, Jena Zeitsch. Naturwiss. 141 (1880) 530566.
[44] Tilton, V.R., Horner, H.T., Stigma, style and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process, Am. J. Bot. 67 (1980) 11131131.
[45] French, J.C., Structure of ovular and placental trichomes of Araceae, Bot. Gaz. 148 (1987) 198208.
[46] Fahn, A., Shimony, C., Glandular trichomes of Fragonia L. (Zygophyllaceae) species: structure, development and secreted materials, Ann. Bot. 77 (1996) 2534.
[47] Simony, R., Duquénoy, P., Compléments à la connaissance anatomique et histochimique des fruits de vanilliers cultivés, en particulier dans les départements et territoires français d’outre-mer, Etudes O.-M 36 (1953) 129134.
[48] Katsuraya, K., Okuyama, K., Hatanaka, K., Oshima, R., Sato, T., Matsuzaki, K., Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy, Carbohydr. Polym. 53 (2003) 183189.
[49] Lord E.M., Adhesion and guidance in compatible pollination, J. Exp. Bot. 54 2003) 47–54.
[50] Mollet, J.-C., Park, S.-Y., Nothnagel, E.A., Lord, E.M., A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix, Plant Cell 12 (2000) 17371749.
[51] O’Neill M., Albersheim P., Darvill A.G., The pectic polysaccharides of primary cell walls, in: Dey P.M., Harborne J.B. (Eds.), Methods in plant biochemistry, Acad. Press, Newyork, USA, 1990, pp. 415–441.
[52] Funk, C., Brodelius, P.E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr., Plant Physiol. 94 (1990) 102108.

Keywords

Anatomy, histochemistry and biochemistry of glucovanillin, oleoresin and mucilage accumulation sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): a comprehensive and critical reexamination

  • Eric Odoux (a1) and Jean-Marc Brillouet (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed