Skip to main content Accessibility help
×
Home

TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY

  • JAMES NEWTON (a1) and JACK A. THORNE (a2)

Abstract

We construct algebras of endomorphisms in the derived category of the cohomology of arithmetic manifolds, which are generated by Hecke operators. We construct Galois representations with coefficients in these Hecke algebras and apply this technique to sharpen recent results of P. Scholze.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[ADP02] Ash, A., Doud, D. and Pollack, D., ‘Galois representations with conjectural connections to arithmetic cohomology’, Duke Math. J. 112(3) (2002), 521579.
[BL94] Bernstein, J. and Lunts, V., Equivariant Sheaves and Functors, Lecture Notes in Mathematics, 1578 (Springer, Berlin, 1994).
[BS73] Borel, A. and Serre, J.-P., ‘Corners and arithmetic groups’, Comment. Math. Helv. 48 (1973), 436491. Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault.
[BGR84] Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261 (Springer, Berlin, 1984), A systematic approach to rigid analytic geometry.
[BK72] Bousfield, A. K. and Kan, D. M., Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, 304 (Springer, Berlin–New York, 1972).
[Cab84] Cabanes, M., ‘Irreducible modules and Levi supplements’, J. Algebra 90(1) (1984), 8497.
[CE12] Calegari, F. and Emerton, M., ‘Completed cohomology—a survey’, inNon-abelian Fundamental Groups and Iwasawa Theory, London Mathematical Society Lecture Note Series, 393 (Cambridge University Press, Cambridge, 2012), 239257.
[CG] Calegari, F. and Geraghty, D., Modularity lifting beyond the Taylor–Wiles method. Preprint, available at arXiv:1207.4224 and arXiv:1209.6293.
[Car79] Cartier, P., ‘Representations of p-adic groups: a survey’, inAutomorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 111155.
[Che14] Chenevier, G., ‘The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings’, inAutomorphic Forms and Galois Representations, Volume 1, London Mathematical Society Lecture Note Series, 414 (Cambridge University Press, Cambridge, 2014), 221285.
[Clo90] Clozel, L., ‘Motifs et formes automorphes: applications du principe de fonctorialité’, inAutomorphic Forms, Shimura Varieties, and L-Functions, Vol. I, Ann Arbor, MI, 1988, Perspectives on Mathematics, 10 (Academic Press, Boston, MA, 1990), 77159.
[Con14] Conrad, B., ‘Reductive group schemes’, inAutour des schémas en groupes, Vol. I, Panoramas et Synthèses, 42/43 (Soc. Math. France, Paris, 2014), 93444.
[CR90] Curtis, C. W. and Reiner, I., Methods of Representation Theory, Vol. I (Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990), With applications to finite groups and orders. Reprint of the 1981 original. A Wiley-Interscience Publication.
[Del77] Deligne, P., Cohomologie étale, Lecture Notes in Mathematics, 569 (Springer, Berlin–New York, 1977), Séminaire de Géométrie Algébrique du Bois-Marie SGA $4\frac{1}{2}$ , Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.
[Fal84] Faltings, G., ‘Arithmetic varieties and rigidity’, inSeminar on Number Theory, Paris 1982–83 (Paris, 1982/1983), Progress in Mathematics, 51 (Birkhäuser Boston, Boston, MA, 1984), 6377.
[GR03] Gabber, O. and Ramero, L., Almost Ring Theory, Lecture Notes in Mathematics, 1800 (Springer, Berlin, 2003).
[Gab62] Gabriel, P., ‘Des catégories abéliennes’, Bull. Soc. Math. France 90 (1962), 323448.
[Gro57] Grothendieck, A., ‘Sur quelques points d’algèbre homologique’, Tôhoku Math. J. (2) 9 (1957), 119221.
[HLTT] Harris, M., Lan, K.-W., Taylor, R. and Thorne, J. A., On the rigid cohomology of certain unitary Shimura varieties. Preprint, available at arXiv:1411.6717.
[Hil10] Hill, R., ‘On Emerton’s p-adic Banach spaces’, Int. Math. Res. Not. IMRN 2010(18) (2010), 35883632.
[Hub94] Huber, R., ‘A generalization of formal schemes and rigid analytic varieties’, Math. Z. 217(4) (1994), 513551.
[Hub96] Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).
[Ive86] Iversen, B., Cohomology of Sheaves, Universitext (Springer, Berlin, 1986).
[Jan03] Jantzen, J. C., Representations of Algebraic Groups, 2nd edn, Mathematical Surveys and Monographs, 107 (American Mathematical Society, Providence, RI, 2003).
[KS94] Kashiwara, M. and Schapira, P., Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 292 (Springer, Berlin, 1994), With a chapter in French by Christian Houzel, corrected reprint of the 1990 original.
[KT] Khare, C. and Thorne, J. A., Potential automorphy and the Leopoldt conjecture. Amer. J. Math., to appear, Preprint, arXiv:1409.7007.
[LS12] Lan, K.-W. and Suh, J., ‘Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties’, Duke Math. J. 161(6) (2012), 11131170.
[LS13] Lan, K.-W. and Suh, J., ‘Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties’, Adv. Math. 242 (2013), 228286.
[Mín11] Mínguez, A., ‘Unramified representations of unitary groups’, inOn the Stabilization of the Trace Formula, Stab Trace Formula Shimura Var. Arith. Appl., 1 (International Press, Somerville, MA, 2011), 389410.
[Mum08] Mumford, D., Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5 (Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008), With appendices by C. P. Ramanujam and Yuri Manin, corrected reprint of the second (1974) edition.
[NSW00] Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323 (Springer, Berlin, 2000).
[Pin90] Pink, R., Arithmetical Compactification of Mixed Shimura Varieties, Bonner Mathematische Schriften [Bonn Mathematical Publications], 209 (Universität Bonn, Mathematisches Institut, Bonn, 1990), Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989.
[PR94] Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139 (Academic Press, Inc., Boston, MA, 1994), Translated from the 1991 Russian original by Rachel Rowen.
[Sch12] Scholze, P., ‘Perfectoid spaces’, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245313.
[Sch13] Scholze, P., ‘Perfectoid spaces: a survey’, inCurrent Developments in Mathematics 2012 (International Press, Somerville, MA, 2013), 193227.
[Sch15] Scholze, P., ‘On torsion in the cohomology of locally symmetric varieties’, Ann. of Math. (2) 182(3) (2015), 9451066.
[SGA72] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, 270 (Springer, Berlin–New York, 1972), Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
[SGA73] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, 305 (Springer, Berlin–New York, 1973), Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.
[The15] The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2015.
[Tit79] Tits, J., ‘Reductive groups over local fields’, inAutomorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 2969.
[Ver95] Verdier, J.-L., ‘Dualité dans la cohomologie des espaces localement compacts’, inSéminaire Bourbaki, Vol. 9 (Soc. Math. France, Paris, 1995), 337349. Exp. No. 300.
[Vis05] Vistoli, A., ‘Grothendieck topologies, fibered categories and descent theory’, inFundamental Algebraic Geometry, Mathematical Surveys and Monographs, 123 (American Mathematical Society, Providence, RI, 2005), 1104.
[Wei94] Weibel, C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38 (Cambridge University Press, Cambridge, 1994).
[Zim12] Zimmermann, A., ‘A Noether–Deuring theorem for derived categories’, Glasg. Math. J. 54(3) (2012), 647654.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY

  • JAMES NEWTON (a1) and JACK A. THORNE (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed