Skip to main content Accessibility help
×
Home

STABILITY PATTERNS IN REPRESENTATION THEORY

  • STEVEN V SAM (a1) and ANDREW SNOWDEN (a2)

Abstract

We develop a comprehensive theory of the stable representation categories of several sequences of groups, including the classical and symmetric groups, and their relation to the unstable categories. An important component of this theory is an array of equivalences between the stable representation category and various other categories, each of which has its own flavor (representation theoretic, combinatorial, commutative algebraic, or categorical) and offers a distinct perspective on the stable category. We use this theory to produce a host of specific results: for example, the construction of injective resolutions of simple objects, duality between the orthogonal and symplectic theories, and a canonical derived auto-equivalence of the general linear theory.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      STABILITY PATTERNS IN REPRESENTATION THEORY
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      STABILITY PATTERNS IN REPRESENTATION THEORY
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      STABILITY PATTERNS IN REPRESENTATION THEORY
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[BC+]Benkart, G., Chakrabarti, M., Halverson, T., Leduc, R., Lee, C. and Stroomer, J., ‘Tensor product representations of general linear groups and their connections with Brauer algebras’, J. Algebra 166(3) (1994), 529567.
[BR]Berele, A. and Regev, A., ‘Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras’, Adv. Math. 64(2) (1987), 118175.
[BS]Boij, M. and Söderberg, J., ‘Graded Betti numbers of Cohen–Macaulay modules and the multiplicity conjecture’, J. Lond. Math. Soc. (2) 78(1) (2008), 85106; arXiv:math/0611081v2.
[Bra]Brauer, R., ‘On algebras which are connected with the semisimple continuous groups’, Ann. of Math. (2) 38(4) (1937), 857872.
[Bru]Brundan, J., ‘Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n)’, J. Amer. Math. Soc. 16(1) (2003), 185231; arXiv:math/0203011v3.
[BS1]Brundan, J. and Stroppel, C., ‘Highest weight categories arising from Khovanov’s diagram algebra III: category 𝓞’, Represent. Theory 15 (2011), 170243; arXiv:0812.1090v3.
[BS2]Brundan, J. and Stroppel, C., ‘Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup’, J. Eur. Math. Soc. 14 (2012), 373419; arXiv:0907.2543v2.
[BS3]Brundan, J. and Stroppel, C., ‘Gradings on walled Brauer algebras and Khovanov’s arc algebra’, Adv. Math. 231 (2012), 709773; arXiv:1107.0999v1.
[CL]Cheng, S.-J. and Lam, N., ‘Irreducible characters of general linear superalgebra and super duality’, Comm. Math. Phys. 298(3) (2010), 645672; arXiv:0905.0332v2.
[CLW]Cheng, S.-J., Lam, N. and Wang, W., ‘Super duality and irreducible characters of ortho-symplectic Lie superalgebras’, Invent. Math. 183(1) (2011), 189224; arXiv:0911.0129v2.
[CEF]Church, T., Ellenberg, J. and Farb, B., ‘FI-modules and stability for representations of symmetric groups’, Duke Math. J. to appear, arXiv:1204.4533v3.
[CF]Church, T. and Farb, B., ‘Representation theory and homological stability’, Adv. Math. 245 (2013), 250314; arXiv:1008.1368v3.
[CW]Comes, J. and Wilson, B., ‘Deligne’s category Rep(GL 𝛿) and representations of general linear supergroups’, Represent. Theory 16 (2012), 568609; arXiv:1108.0652v1.
[DPS]Dan-Cohen, E., Penkov, I. and Serganova, V., ‘A Koszul category of representations of finitary Lie algebras’, Preprint, 2011, arXiv:1105.3407v2.
[De1]Deligne, P., ‘Catégories tannakiennes’, in:The Grothendieck Festschrift, Vol. II, Progress in Mathematics 87 (Birkhäuser Boston, Boston, MA, 1990), 111195.
[De2]Deligne, P., ‘La catégorie des représentations du groupe symétrique S t , lorsque t n’est pas un entier naturel’, in:Algebraic Groups and Homogeneous Spaces (Tata Inst. Fund. Res., Mumbai, 2007), 209273.
[EFW]Eisenbud, D., Fløystad, G. and Weyman, J., ‘The existence of equivariant pure free resolutions’, Ann. Inst. Fourier (Grenoble) 61(3) (2011), 905926; arXiv:0709.1529v5.
[ES]Eisenbud, D. and Schreyer, F.-O., ‘Betti numbers of graded modules and cohomology of vector bundles’, J. Amer. Math. Soc. 22(3) (2009), 859888; arXiv:0712.1843v3.
[FH]Fulton, W. and Harris, J., Representation Theory: A First Course, Graduate Texts in Mathematics, 129 (Springer, New York, 1991).
[GW]Goodman, R. and Wallach, N. R., Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, 255 (Springer, New York, 2009).
[HR]Halverson, T. and Ram, A., ‘Partition algebras’, European J. Combin. 26(6) (2005), 869921; arXiv:math/0401314v2.
[HH]Hashimoto, M. and Hayashi, T., ‘Quantum multilinear algebra’, Tohoku Math. J. (2) 44(4) (1992), 471521.
[HTW]Howe, R., Tan, E.-C. and Willenbring, J. F., ‘Stable branching rules for classical symmetric pairs’, Trans. Amer. Math. Soc. 357(4) (2005), 16011626; arXiv:math/0311159v2.
[Jon]Jones, V. F. R., ‘The Potts model and the symmetric group’, in:Subfactors (Kyuzeso, 1993) (World Scientific Publications, River Edge, NJ, 1994), 259267.
[Kin]King, R. C., ‘Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups’, J. Math. Phys. 12 (1971), 15881598.
[Koi]Koike, K., ‘On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters’, Adv. Math. 74(1) (1989), 5786.
[KT]Koike, K. and Terada, I., ‘Young-diagrammatic methods for the representation theory of the classical groups of type B n , C n , D n’, J. Algebra 107(2) (1987), 466511.
[Lit1]Littlewood, D. E., The Theory of Group Characters and Matrix Representations of Groups reprint of the second (1950) edition, (AMS Chelsea Publishing, Providence, RI, 2006).
[Lit2]Littlewood, D. E., ‘Products and plethysms of characters with orthogonal, symplectic and symmetric groups’, Canad. J. Math. 10 (1958), 1732.
[Mac]Macdonald, I. G., Symmetric Functions and Hall Polynomials, 2nd edition, (1995), With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York.
[Mar]Martin, P., ‘Temperley–Lieb algebras for nonplanar statistical mechanics—the partition algebra construction’, J. Knot Theory Ramifications 3(1) (1994), 5182.
[NSS]Nagpal, R., V Sam, S. and Snowden, A., ‘Noetherianity of some degree two twisted commutative algebras’, Preprint, 2015, arXiv:1501.06925v1.
[OV]Okounkov, A. and Vershik, A., ‘A new approach to representation theory of symmetric groups’, Selecta Math. (N.S.) 2(4) (1996), 581605; arXiv:math/0503040v3.
[Ols]Ol’shanskiĭ, G. I., ‘Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians’, in:Topics in Representation Theory, Adv. Soviet Math., 2 (American Mathematical Society, Providence, RI, 1991), 166.
[OR]Ottaviani, G. and Rubei, E., ‘Quivers and the cohomology of homogeneous vector bundles’, Duke Math. J. 132(3) (2006), 459508; arXiv:math/0403307v2.
[PSe]Penkov, I. and Serganova, V., ‘Categories of integrable sl ()-, o ()-, sp ()-modules’, in:Representation Theory and Mathematical Physics, Contemporary Mathematics, 557 (American Mathematical Society, Providence, RI, 2011), 335357. arXiv:1006.2749v1.
[PSt]Penkov, I. and Styrkas, K., ‘Tensor representations of classical locally finite Lie algebras’, in:Developments and Trends in Infinite-Dimensional Lie Theory, Progress in Mathematics 288 (Birkhäuser Boston, Inc, Boston, MA, 2011), 127150. arXiv:0709.1525v1.
[Pro]Proctor, R. A., ‘Odd symplectic groups’, Invent. Math. 92(2) (1988), 307332.
[SS1]V Sam, S. and Snowden, A., ‘GL-equivariant modules over polynomial rings in infinitely many variables’, Trans. Amer. Math. Soc. to appear, arXiv:1206.2233v2.
[SS2]V Sam, S. and Snowden, A., ‘Introduction to twisted commutative algebras’, Preprint, 2012, arXiv:1209.5122v1.
[SS3]V Sam, S. and Snowden, A., ‘GL-equivariant modules over polynomial rings in infinitely many variables II’, in preparation.
[SS4]V Sam, S. and Snowden, A., ‘Infinite rank spinor and oscillator representations’, in preparation.
[SSW]V Sam, S., Snowden, A. and Weyman, J., ‘Homology of Littlewood complexes’, Selecta Math. (N.S.) 19(3) (2013), 655698; arXiv:1209.3509v2.
[Se1]Serganova, V., ‘Kazhdan–Lusztig polynomials and character formula for the Lie superalgebra gl(m|n)’, Selecta Math. (N.S.) 2(4) (1996), 607651.
[Se2]Serganova, V., ‘Classical Lie superalgebras at infinity’, in:Advances in Lie Superalgebras, Springer INdAM Ser., 7 (Springer, Cham, 2014), 181201.
[Sv]Sergeev, A. N., ‘The tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n, m) and Q (n)’, Math. USSR Sbornik 51 (1985), 419427.
[Sno]Snowden, A., ‘Syzygies of Segre embeddings and Δ-modules’, Duke Math. J. 162(2) (2013), 225277; arXiv:1006.5248v4.
[Sta]Stanley, R. P., Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, 62 (Cambridge University Press, Cambridge, 1999).
[Wen]Wenzl, H., ‘On the structure of Brauer’s centralizer algebras’, Ann. of Math. (2) 128(1) (1988), 173193.
[Wyl]Weyl, H., The Classical Groups: their Invariants and Representations, Fifteenth printing, Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1997).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Related content

Powered by UNSILO

STABILITY PATTERNS IN REPRESENTATION THEORY

  • STEVEN V SAM (a1) and ANDREW SNOWDEN (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.