Skip to main content Accessibility help
×
Home

SPACE OF RICCI FLOWS (II)—PART A: MODULI OF SINGULAR CALABI–YAU SPACES

  • XIUXIONG CHEN (a1) (a2) and BING WANG (a3)

Abstract

We establish the compactness of the moduli space of noncollapsed Calabi–Yau spaces with mild singularities. Based on this compactness result, we develop a new approach to study the weak compactness of Riemannian manifolds.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      SPACE OF RICCI FLOWS (II)—PART A: MODULI OF SINGULAR CALABI–YAU SPACES
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      SPACE OF RICCI FLOWS (II)—PART A: MODULI OF SINGULAR CALABI–YAU SPACES
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      SPACE OF RICCI FLOWS (II)—PART A: MODULI OF SINGULAR CALABI–YAU SPACES
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[1] Abresch, U. and Gromoll, D., ‘On complete manifolds with nonnegative Ricci curvature’, J. Amer. Math. Soc. 3(2) (1990), 355374.
[2] Anderson, M., ‘Convergence and rigidity of manifolds under Ricci curvature bounds’, Invent. Math. 102 (1990), 429445.
[3] Bakry, D., ‘On Sobolev and logarithmic inequalities for Markov semigroups’, inNew Trends in Stochastic Analysis (Charingworth, 1994) (World Scientific Publishing, River Edge, NJ, 1997), 4375.
[4] Bakry, D. and Emery, M., ‘Diffusions hypercontractives’, Seminaire de probabilities XIX (1983/84), 177206.
[5] Cheeger, J., ‘Differentiability of Lipschitz functions on metric measure spaces’, Geom. Funct. Anal. 9 (1999), 428517.
[6] Cheeger, J., Degeneration of Riemannian Metrics Under Ricci Curvature Bounds, Publications of the Scuola Normale Superiore, Edizioni della Normale, October 1, 2001.
[7] Cheeger, J., ‘Integral Bounds on curvature, elliptic estimates and rectifiability of singular sets’, Geom. Funct. Anal. 13 (2003), 2072.
[8] Cheeger, J. and Colding, T. H., ‘Lower bounds on Ricci curvature and the almost rigidity of warped products’, Ann. of Math. (2) 144(1) (1996), 189237.
[9] Cheeger, J. and Colding, T. H., ‘On the structure of spaces with Ricci curvature bounded below. I’, J. Differential Geom. 45 (1997), 406480.
[10] Cheeger, J., Colding, T. H. and Tian, G., ‘On the singularities of spaces with bounded Ricci curvature’, Geom. Funct. Anal. 12 (2002), 873914.
[11] Cheeger, J. and Naber, A., ‘Lower bounds on Ricci curvature and quantitative behavior of singular sets’, Invent. Math. 191(2) (2013), 321339.
[12] Cheeger, J. and Simons, J., ‘Differential characters and geometric invariants’, inGeometry and Topology (College Park, MD, 1983/84), Lecture Notes in Mathematics, 1167 (Springer, 1985), 5080.
[13] Colding, T. H., ‘Ricci curvature and volume convergence’, Ann. of Math. (2) 145 (1997), 477501.
[14] Colding, T. H. and Naber, A., ‘Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications’, Ann. of Math. (2) 176(2) (2012), 11731229.
[15] Chen, X. X. and Wang, B., ‘Space of Ricci flows (I)’, Comm. Pure Appl. Math. 65(10) (2012), 13991457.
[16] Chen, X. X. and Wang, B., ‘Space of Ricci flows (II)’, Preprint, 2014, arXiv:1405.6797.
[17] Chen, X. X. and Wang, B., ‘Space of Ricci flows (II)—Part B: weak compactness of the flows’, Preprint.
[18] Chen, X. X. and Wang, B., ‘Further details of “Space of Ricci flows (II)”’, Preprint, available at www.math.wisc.edu/∼bwang/HTfurtherdetails.pdf.
[19] Cheng, S. Y. and Yau, S. T., ‘Differential equations on Riemannian manifolds and their geometric applications’, Comm. Pure Appl. Math. 28(3) (1975), 333354.
[20] Coulhon, T. and Saloff-Coste, L., ‘Isopérimétrie pour les groupes et les variétés’, Rev. Mat. Iberoam. 9(2) (1993), 293314.
[21] Croke, C. B., ‘Some isoperimetric inequalities and eigenvalue estimates’, Ann. Sci. Éc. Norm. Supér. 13 (1980), 419435.
[22] Evans, L. C., Partial Differential Equations, 2nd edn, Graduate Studies in Mathematics, 19 (American Mathematical Society, 2010).
[23] Falconer, K., Fractal Geometry, Mathematical Foundations and Applications (John Wiley and Sons, 1990).
[24] Fukushima, M., Oshima, Y. and Takeda, M., Dirichlet Forms and Symmetric Markov Processes (de Gruyter, Berlin, 1994).
[25] Gigli, N., ‘The splitting theorem in non-smooth context’, Preprint, 2013, arXiv:1302.5555.
[26] Greene, B., The Elegant Universe (W.W. Norton and Co., 2003), ISBN 0-393-05858-1.
[27] Grigor’yan, A. A., ‘The heat equation on noncompact Riemannian manifolds (Russian)’, Mat. Sb. 182(1) (1991), 5587. English translation: Math. USSR, Sb. 72(1) (1992), 47–77.
[28] Hamilton, R. S., ‘A matrix Harnack estimate for the heat equation’, Comm. Anal. Geom. 1(1) (1993), 113126.
[29] Hamilton, R. S., ‘A compactness property for solutions of the Ricci flow’, Amer. J. Math. 117(3) (1995), 545572.
[30] Kinnunen, J. and Shanmugalingam, N., ‘Regularity of quasi-minimizers on metric spaces’, Manuscripta Math. 105 (2001), 401423.
[31] Koskela, P., Rajala, K. and Shanmugalingam, N., ‘Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces’, J. Funct. Anal. 202 (2003), 147173.
[32] Koskela, P. and Zhou, Y., ‘Geometry and analysis of Dirichlet forms’, Adv. Math. 231(5) (2012), 27552801.
[33] Li, P. and Yau, S. T., ‘On the parabolic kernel of the Schrödinger operator’, Acta Math. 156 (1986), 153201.
[34] Perelman, G., ‘The entropy formula for the Ricci flow and its geometric applications’, Preprint, arXiv:math.DG/0211159.
[35] Shanmugalingam, N., ‘Newtonian spaces: an extension of Sobolev spaces to metric measure spaces’, Rev. Mat. Iberoam. 16(2) (2000), 243279.
[36] Shanmugalingam, N., ‘Harmonic functions on metric spaces’, Illinois J. Math. 45(3) (2001), 10211050.
[37] Saloff-Coste, L., ‘Uniformly elliptic operators on Riemannian manifolds’, J. Differential Geom. 36 (1992), 417450.
[38] Saloff-Coste, L., ‘A note on Poincaré, Sobolev, and Harnack inequalities’, Int. Math. Res. Not. IMRN 2 (1992), 2738.
[39] Saloff-Coste, L., ‘Sobolev inequalities in familiar and unfamiliar settings’, inSobolev Spaces in Mathematics I, Int. Math. Ser., 8 (Springer, New York, 2009), 299343.
[40] Sturm, K. T., ‘Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties’, J. Reine Angew. Math. 456 (1994), 173196.
[41] Sturm, K. T., ‘Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations’, Osaka J. Math. 32(2) (1995), 275312.
[42] Sturm, K. T., ‘Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality’, J. Math. Pures Appl. 75(9) (1996), 273297.
[43] Wei, G. F., ‘Manifolds with a lower Ricci curvature bound’, Preprint, arXiv:math/0612107.
[44] Zhu, S. H., ‘The comparison geometry of Ricci curvature’, inComparison Geometry 30 (MSRI Publications, 1997), 221262.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

SPACE OF RICCI FLOWS (II)—PART A: MODULI OF SINGULAR CALABI–YAU SPACES

  • XIUXIONG CHEN (a1) (a2) and BING WANG (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed