Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T17:10:16.542Z Has data issue: false hasContentIssue false

The effective Shafarevich conjecture for abelian varieties of ${\text {GL}_{2}}$-type

Published online by Cambridge University Press:  19 May 2021

Rafael von Känel*
Affiliation:
IAS Tsinghua University, Beijing 100084, China; E-mail:rafaelvonkanel@gmail.com.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we establish the effective Shafarevich conjecture for abelian varieties over ${\mathbb Q}$ of ${\text {GL}_2}$-type. The proof combines Faltings’ method with Serre’s modularity conjecture, isogeny estimates and results from Arakelov theory. Our result opens the way for the effective study of integral points on certain higher dimensional moduli schemes such as, for example, Hilbert modular varieties.

Type
Number Theory
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Baker, A. and Wüstholz, G., Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, Vol. 9 (Cambridge University Press, Cambridge, 2007).Google Scholar
Belyĭ, G. V., ‘Galois extensions of a maximal cyclotomic field’, Izv. Akad. Nauk SSSR Ser. Mat. 43 (2) (1979), 267276, 479.Google Scholar
Bombieri, E. and Gubler, W., Heights in Diophantine Geometry, New Mathematical Monographs, Vol. 4 (Cambridge University Press, Cambridge, 2006).Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., ‘Néron models’, in Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 21 (Springer, Berlin, 1990).Google Scholar
Bost, J.-B., ‘Arakelov geometry of abelian varieties’, in Conference on Arithmetical Geometry, Vol. 96-51 (Max Planck Institut für Mathematik, Bonn, Germany, 1996), 16.Google Scholar
Bost, J.-B., ‘Périodes et isogenies des variétés abéliennes sur les corps de nombres (d’après D. Masser et G. Wüstholz)’ [Periods and isogenies of abelian varieties over number fields], Astérisque 237(795) (1996), 115161.Google Scholar
Breuil, C., Conrad, B., Diamond, F. and Taylor, R., ‘On the modularity of elliptic curves over $\boldsymbol{Q}$: wild 3-adic exercises’, J. Amer. Math. Soc. 14 (4) (2001), 843939.CrossRefGoogle Scholar
Brumer, A. and Kramer, K., ‘The conductor of an abelian variety’, Compos. Math. 92 (2) (1994), 227248.Google Scholar
Brumer, A. and Silverman, J. H., The number of elliptic curves over $\boldsymbol{Q}$ with conductor $N$, Manuscripta Math. 91 (1) (1996), 95102.CrossRefGoogle Scholar
Carayol, H., ‘Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert’ [On l-adic representations associated with Hilbert modular forms], Ann. Sci. École Norm. Sup. (4) 19 (3) (1986), 409468.CrossRefGoogle Scholar
Coates, J., ‘An effective $p$-adic analogue of a theorem of Thue. III. The diophantine equation ${y}^2={x}^3+k$, Acta Arith. 16 (1969/1970), 425435.CrossRefGoogle Scholar
Coleman, R. F. and Edixhoven, B., ‘On the semi-simplicity of the ${U}_p$-operator on modular forms’, Math. Ann. 310 (1) (1998), 119127.CrossRefGoogle Scholar
Cremona, J. E., Lario, J.-C., Quer, J. and Ribet, K. (eds.), ‘Modular curves and abelian varieties’, in Progress in Mathematics, Vol. 224 (Birkhäuser, Basel, 2004) 1292.CrossRefGoogle Scholar
Deligne, P., ‘Représentations $l$-adiques’ [l-adic representations], Astérisque 127 (1985), 249255.Google Scholar
Deligne, P., ‘Un théorème de finitude pour la monodromie’ [A finiteness theorem for monodromy], in Discrete Groups in Geometry and Analysis (New Haven, Conn., 1984) (Birkhäuser Boston, , 1987), 119.Google Scholar
Diamond, F. and Shurman, J., A First Course in Modular Forms, Graduate Texts in Mathematics, Vol. 228 (Springer, New York, 2005).Google Scholar
Edixhoven, B. and de Jong, R., Bounds for Arakelov Invariants of Modular Curves, Computational Aspects of Modular Forms and Galois Representations (Princeton University Press, Princeton, NJ, 2011), 217256.CrossRefGoogle Scholar
Ellenberg, J. S. and Venkatesh, A., ‘Reflection principles and bounds for class group torsion’, Int. Math. Res. Not. IMRN 1 (2007), Art. ID rnm002.Google Scholar
Evertse, J. H. and Győry, K., Discriminant Equations in Diophantine Number Theory, New Mathematical Monographs (Cambridge University Press, Cambridge, 2016).Google Scholar
Faltings, G., ‘Arakelov’s theorem for abelian varieties’, Invent. Math. 73 (3) (1983), 337347.CrossRefGoogle Scholar
Faltings, G., ‘Endlichkeitssätze für abelsche Varietäten über Zahlkörpern’ [Finiteness theorems for abelian varieties over number fields], Invent. Math. 73 (3) (1983), 349366.CrossRefGoogle Scholar
Frey, G., ‘Links between solutions of $A-B=C$ and elliptic curves’, Number Theory (Ulm, 1987), Lecture Notes in Math., Vol. 1380 (Springer, New York, 1989), 3162.Google Scholar
Frey, G., ‘On ternary equations of Fermat type and relations with elliptic curves, in Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995) (Springer, New York, 1997), 527548.Google Scholar
Fuchs, C., von Känel, R. and Wüstholz, G., ‘An effective Shafarevich theorem for elliptic curves’, Acta Arith. 148 (2) (2011), 189203.CrossRefGoogle Scholar
Gaudron, É. and Rémond, G., ‘Polarisations et isogénies’ [Polarizations and isogenies], Duke Math. J. 163 (11) (2014), 20572108.CrossRefGoogle Scholar
Gaudron, É. and Rémond, G., ‘Théorème des périodes et degrés minimaux d’isogénies’ [The period theorem and minimal degrees of isogenies], Comment. Math. Helv. 89 (2) (2014), 343403.CrossRefGoogle Scholar
Gaudron, É. and Rémond, G., ‘Nouveaux théorèmes d’isogénie’ [New isogeny theorems], Preprint, 2020.Google Scholar
van der Geer, G., ‘Hilbert modular surfaces’, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 16 (Springer, Berlin, 1988).Google Scholar
Grothendieck, A. and Raynaud, M., ‘Modéles de Néron et monodromie’ [Neron models and monodromy], in Groupes de monodromie en Géometrie Algebrique , I, II, Lecture Notes in Math., Vol. 288 (Springer, Berlin, Heidelberg 1972), 313523.Google Scholar
Helfgott, H. A. and Venkatesh, A., ‘Integral points on elliptic curves and 3-torsion in class groups’, J. Amer. Math. Soc. 19 (3) (2006), 527550.CrossRefGoogle Scholar
Javanpeykar, A., ‘Polynomial bounds for Arakelov invariants of Belyi curves’, Algebra Number Theory 8(1) (2014), 89140. With an appendix by Peter Bruin.CrossRefGoogle Scholar
de Jong, R. and Rémond, G., ‘Conjecture de Shafarevitch effective pour les revêtements cycliques’ [Effective Shafarevich conjecture for cyclic coverings], Algebra Number Theory 5 (8) (2011), 11331143.CrossRefGoogle Scholar
Jorgenson, J. and Kramer, J., ‘Bounds on Faltings’s delta function through covers’, Ann. Math. (2) 170 (1) (2009), 143.CrossRefGoogle Scholar
Jorgenson, J. and Kramer, J., ‘Effective bounds for Faltings’s delta function’, Ann. Fac. Sci. Toulouse Math. (6) 23 (3) (2014), 665698.CrossRefGoogle Scholar
von Känel, R., ‘An effective proof of the hyperelliptic Shafarevich conjecture and applications’, Thesis, ETH Zurich (2011).Google Scholar
von Känel, R., ‘Modularity and integral points on moduli schemes’, 2013, arXiv:1310.7263.Google Scholar
von Känel, R., ‘An effective proof of the hyperelliptic Shafarevich conjecture’, J. Théor. Nombres Bordeaux 26 (1) (2014), 507530.CrossRefGoogle Scholar
von Känel, R., ‘Integral points on moduli schemes of elliptic curves’, Trans. London Math. Soc. 1(1) (2014), 85115.CrossRefGoogle Scholar
von Känel, R., ‘On Szpiro’s discriminant conjecture’, Int. Math. Res. Not. IMRN 16 (2014), 44574491.CrossRefGoogle Scholar
von Känel, R. and Kret, A., ‘Integral points on Hilbert moduli schemes’, Preprint, 2019, arXiv:1904.03503.Google Scholar
von Känel, R. and Kret, A., ‘Integral points on coarse Hilbert moduli schemes’, In preparation.Google Scholar
von Känel, R. and Matschke, B., ‘Solving $S$-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture’, Preprint, 2016, arXiv:1605.06079.Google Scholar
Khare, C. and Wintenberger, J.-P., ‘Serre’s modularity conjecture’, Invent. Math. 178 (3) (2009), 485586.CrossRefGoogle Scholar
Levin, A., ‘Siegel’s theorem and the Shafarevich conjecture’, J. Théor. Nombres Bordeaux 24 (3) (2012), 705727.CrossRefGoogle Scholar
Lockhart, P., Rosen, M. and Silverman, J. H., ‘An upper bound for the conductor of an abelian variety’, J. Algebraic Geom. 2 (4) (1993), 569601.Google Scholar
Masser, D. W. and Wüstholz, G., ‘Isogeny estimates for abelian varieties, and finiteness theorems’, Ann. Math. (2) 137 (3) (1993), 459472.CrossRefGoogle Scholar
Masser, D. W. and Wüstholz, G., ‘Factorization estimates for abelian varieties’, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 524.CrossRefGoogle Scholar
Mayer, H., ‘Self-intersection of the relative dualizing sheaf on modular curves ${X}_1(N)$’, J. Théor. Nombres Bordeaux 26 (1) (2014), 111161.CrossRefGoogle Scholar
Milne, J. S., ‘On the arithmetic of abelian varieties’, Invent. Math. 17 (1972), 177190.CrossRefGoogle Scholar
Murty, M. R. and Pasten, H., ‘Modular forms and effective Diophantine approximation’, J. Number Theory 133 (11) (2013), 37393754.CrossRefGoogle Scholar
Paršin, A. N., ‘Algebraic curves over function fields. I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 11911219.Google Scholar
Paršin, A. N., ‘Minimal models of curves of genus $2$, and homomorphisms of abelian varieties defined over a field of finite characteristic’, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1) (1972), 67109.Google Scholar
Poulakis, D., ‘Corrigendum to the paper: “The number of solutions of the Mordell equation” [Acta. Arith. 88 (1999), no. 173–179]’, Acta Arith. 92 (4) (2000), 387388.CrossRefGoogle Scholar
Raynaud, M., ‘Hauteurs et isogénies’ [Heights and isogenies], Astérisque 127 (1985), 199234.Google Scholar
Rémond, G., ‘Hauteurs thêta et construction de Kodaira’ [Theta heights and Kodaira construction], J. Number Theory 78 (2) (1999), 287311.CrossRefGoogle Scholar
Rémond, G., ‘Propriétés de la hauteur de Faltings’ [Properties of the Faltings height], Preprint, 2019.Google Scholar
Ribet, K. A., ‘Galois action on division points of Abelian varieties with real multiplications’, Amer. J. Math. 98 (3) (1976), 751804.Google Scholar
Ribet, K. A., ‘Twists of modular forms and endomorphisms of abelian varieties’, Math. Ann. 253 (1) (1980), 4362.CrossRefGoogle Scholar
Ribet, K. A., ‘Abelian varieties over $Q$ and modular forms’, in Algebra and Topology (Korea Adv. Inst. Sci. Tech., Taejŏn, Korean, 1992), 5379.Google Scholar
Rosser, J. B. and Schoenfeld, L., ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6 (1) (1962), 6494.CrossRefGoogle Scholar
Serre, J.-P., ‘Facteurs locaux des fonctions zêta des variétes algébriques’ [Local factors of zeta functions of algebraic varieties (definitions and conjectures)], in Séminaire DPP, Vol. 19 Secrétariat Math., Paris, (1969–1970).Google Scholar
Serre, J.-P., ‘Sur les représentations modulaires de degré $2$ de $\mathrm{Gal}\left(\overline{Q}/Q\right)$’ [On modular representations of degree 2 of $\mathrm{Gal}\left(\overline{Q}/Q\right)$], Duke Math. J. 54 (1) (1987), 179230.CrossRefGoogle Scholar
Serre, J.-P. and Tate, J., ‘Good reduction of abelian varieties’, Ann. Math. (2) 88 (1968), 492517.CrossRefGoogle Scholar
Shimura, G., ‘Introduction to the arithmetic theory of automorphic functions’, in Kanô Memorial Lectures, Publications of the Mathematical Society of Japan , No. 11 (Iwanami Shoten, Tokyo, 1971).Google Scholar
Szpiro, L. and Ullmo, E., ‘Variation de la hauteur de Faltings dans une classe de $\overline{Q}$-isogénie de courbe elliptique’ [Variation of the Faltings height in a $\overline{Q}$-isogeny class of elliptic curves], Duke Math. J. 97 (1) (1999), 8197.CrossRefGoogle Scholar
Taylor, R. and Wiles, A., ‘Ring-theoretic properties of certain Hecke algebras’, Ann. Math. (2) 141 (3) (1995), 553572.CrossRefGoogle Scholar
Ullmo, E., ‘Hauteur de Faltings de quotients de ${J}_0(N)$, discriminants d’algèbres de Hecke et congruences entre formes modulaires’ [Faltings height of quotients of ${J}_0(N)$, Hecke algebra discriminants and congruences between modular forms], Amer. J. Math. 122 (1) (2000), 83115.CrossRefGoogle Scholar
Wiles, A., ‘Modular elliptic curves and Fermat’s last theorem’, Ann. Math. (2) 141 (3) (1995), 443551.CrossRefGoogle Scholar