Skip to main content Accessibility help
×
Home

COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS

  • KAI-WEN LAN (a1)

Abstract

We show that, by taking normalizations over certain auxiliary good reduction integral models, one obtains integral models of toroidal and minimal compactifications of PEL-type Shimura varieties which enjoy many features of the good reduction theory studied as in the earlier works of Faltings and Chai’s and the author’s. We treat all PEL-type cases uniformly, with no assumption on the level, ramifications, and residue characteristics involved.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[1] Arthur, J., Ellwood, D. and Kottwitz, R. (Eds.), Harmonic Analysis, the Trace Formula, and Shimura Varieties. Proceedings of the Clay Mathematics Institute 2003 Summer School, The Fields Institute, Toronto, Canada, June 2–27, 2003, Clay Mathematics Proceedings, 4 (American Mathematical Society, Providence, Rhode Island, 2005), Clay Mathematics Institute, Cambridge, MA.
[2] Ash, A., Mumford, D., Rapoport, M. and Tai, Y., Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History Frontiers and Applications, 4 (Mathematical Science Press, Brookline, MA, 1975).
[3] Baily, W. L. Jr. and Borel, A., ‘Compactification of arithmetic quotients of bounded symmetric domains’, Ann. of Math. (2) 84(3) (1966), 442528.
[4] Bosch, S., Lütkebohmert, W. and Raybaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 21 (Springer, Berlin, Heidelberg, New York, 1990).
[5] Bost, J.-B., Boyer, P., Genestier, A., Lafforgue, L., Lysenko, S., Morel, S. and Ngô, B. C. (Eds.), De la Géometrie Algébrique aux Formes Automorphes (II): Une collection d’articles en l’honneur du soixantième Anniversaire de Gérard Laumon, Astérisque, 370 (Société Mathématique de France, Paris, 2015).
[6] de Jong, A. J., ‘The moduli spaces of polarized abelian varieties’, Math. Ann. 295 (1993), 485503.
[7] Deligne, P. and Kuyk, W. (Eds.), Modular Functions of One Variable II, Lecture Notes in Mathematics, 349 (Springer, Berlin, Heidelberg, New York, 1973).
[8] Deligne, P. and Mumford, D., ‘The irreducibility of the space of curves of given genus’, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75109.
[9] Deligne, P. and Rapoport, M., Les schémas de modules de courbes elliptiques, in Deligne and Kuyk [ 7 ], 143–316.
[10] Faltings, G. and Chai, C.-L., Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 22 (Springer, Berlin, Heidelberg, New York, 1990).
[11] Farkas, G. and Morrison, I. (Eds.), Handbook of Moduli: Volume III, Advanced Lectures in Mathematics, 24 (International Press, Somerville, MA, 2013), Higher Education Press, Beijing.
[12] Görtz, U., ‘On the flatness of local models for the symplectic group’, Adv. Math. 176 (2003), 89115.
[13] Grothendieck, A. (Ed.), Revêtements Étales et Groupe Fondamental (SGA 1), Lecture Notes in Mathematics, 224 (Springer, Berlin, Heidelberg, New York, 1971).
[14] Grothendieck, A. and Dieudonné, J., Eléments de Géométrie Algébrique, Publications Mathématiques de Institut des Hautes Etudes Scientifiques, 4, 8, 11, 17, 20, 24, 28, 32 (Institut des Hautes Etudes Scientifiques, Paris, 1960, 1961, 1963, 1964, 1965, 1966, 1967).
[15] Grothendieck, A. and Dieudonné, J., Eléments de Géométrie Algébrique I: Le Langage des Schémas, Grundlehren der Mathematischen Wissenschaften, 166 (Springer, Berlin, Heidelberg, New York, 1971).
[16] Haines, T. J., Introduction to Shimura varieties with bad reductions of parahoric type, in Arthur et al. [ 1 ], 583–658.
[17] Hakim, M., Topos Annelés et Schémas Relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete, 64 (Springer, Berlin, Heidelberg, New York, 1972).
[18] Harris, M., ‘Functorial properties of toroidal compactifications of locally symmetric varieties’, Proc. Lond. Math. Soc. (3) 59 (1989), 122.
[19] Harris, M., Lan, K.-W., Taylor, R. and Thorne, J., On the rigid cohomology of certain Shimura varieties, Preprint, 2013.
[20] Hartwig, P., Kottwitz–Rapoport and $p$ -rank strata in the reduction of Shimura varieties of PEL type, Preprint, 2012.
[21] He, X., ‘Normality and Cohen–Macaulayness of local models of Shimura varieties’, Duke Math. J. 162(13) (2013), 25092523.
[22] Hochster, M., ‘Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes’, Ann. of Math. (2) 96(2) (1972), 318337.
[23] Kato, K., ‘Toric singularities’, Amer. J. Math. 116(5) (1994), 10731099.
[24] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal Embeddings I, Lecture Notes in Mathematics, 339 (Springer, Berlin, Heidelberg, New York, 1973).
[25] Kisin, M., ‘Integral models for Shimura varieties of abelian type’, J. Amer. Math. Soc. 23(4) (2010), 9671012.
[26] Kottwitz, R. E., ‘Points on some Shimura varieties over finite fields’, J. Amer. Math. Soc. 5(2) (1992), 373444.
[27] Lan, K.-W., ‘Elevators for degenerations of PEL structures’, Math. Res. Lett. 18(5) (2011), 889907.
[28] Lan, K.-W., ‘Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties’, J. Reine Angew. Math. 664 (2012), 163228. errata available online at the author’s website.
[29] Lan, K.-W., ‘Toroidal compactifications of PEL-type Kuga families’, Algebra Number Theory 6(5) (2012), 885966. errata available online at the author’s website.
[30] Lan, K.-W., Arithmetic Compactification of PEL-type Shimura Varieties, London Mathematical Society Monographs, 36 (Princeton University Press, Princeton, 2013), errata and revision available online at the author’s website.
[31] Lan, K.-W., Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci, Preprint, 2013.
[32] Langlands, R. P. and Ramakrishnan, D. (Eds.), The Zeta Functions of Picard Modular Surfaces: Based on Lectures Delivered at a CRM Workshop in the Spring of 1988, (Les Publications CRM, Montréal, 1992).
[33] Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, 6 (Oxford University Press, Oxford, 2002), translated by Reinie Erné.
[34] Madapusi Pera, K., Toroidal compactifications of integral models of Shimura varieties of Hodge type, Preprint, 2015.
[35] Matsumura, H., Commutative Algebra, 2nd edn, Mathematics Lecture Note Series (The Benjamin/Cummings Publishing Company, Inc., 1980).
[36] Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8 (Cambridge University Press, Cambridge, New York, 1986).
[37] Milne, J. S., The points on a Shimura variety modulo a prime of good reduction, in Langlands and Ramakrishnan [ 32 ], 151–253.
[38] Moonen, B., ‘Models of Shimura varieties in mixed characteristic’, in Galois Representations in Arithmetic Algebraic Geometry, [ 53 ], 267–350.
[39] Moret-Bailly, L., Pinceaux de Variétés Abéliennes, Astérisque, 129 (Société Mathématique de France, Paris, 1985).
[40] Moret-Bailly, L., ‘Un problème de descente’, Bull. Soc. Math. France 124 (1996), 559585.
[41] Mumford, D., Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5 (Oxford University Press, Oxford, 1970), with appendices by C. P. Ramanujam and Y. Manin.
[42] Mumford, D., ‘An analytic construction of degenerating abelian varieties over complete rings’, Compos. Math. 24(3) (1972), 239272.
[43] Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, 3rd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34 (Springer, Berlin, Heidelberg, New York, 1994).
[44] Ngô, B. C. and Genestier, A., ‘Alcôves et p-rang des variétés abéliennes’, Ann. Inst. Fourier. Grenoble 52(6) (2002), 16651680.
[45] Pappas, G. and Rapoport, M., ‘Local models in the ramified case, I. The EL-case’, J. Algebraic Geom. 12(1) (2003), 107145.
[46] Pappas, G. and Rapoport, M., ‘Local models in the ramified case, II. Splitting models’, Duke Math. J. 127(2) (2005), 193250.
[47] Pappas, G. and Zhu, X., ‘Local models of Shimura varieties and a conjecture of Kottwitz’, Invent. Math. 194 (2013), 147254.
[48] Pappas, G., Rapoport, M. and Smithling, B., ‘Local models of Shimura varieties, I. Geometry and combinatorics’, in Farkas and Morrison [ 11 ], 135–217.
[49] Pink, R., ‘Arithmetic compactification of mixed Shimura varieties’, PhD Thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 1989.
[50] Rapoport, M., ‘A guide to the reduction modulo $p$ of Shimura varieties’, in Tilouine et al. [ 58 ], 271–318.
[51] Rapoport, M. and Zink, T., Period Spaces for p-Divisible Groups, Annals of Mathematics Studies, 141 (Princeton University Press, Princeton, 1996).
[52] Raynaud, M., Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, 119 (Springer, Berlin, Heidelberg, New York, 1970).
[53] Scholl, A. J. and Taylor, R. L., Galois Representations in Arithmetic Algebraic Geometry, London Mathematical Society Lecture Note Series, 254 (Cambridge University Press, Cambridge, New York, 1998).
[54] Stamm, H., ‘On the reduction of the Hilbert–Blumenthal-moduli scheme with Γ0(p)-level structure’, Forum Math. 9(4) (1997), 405455.
[55] Stroh, B., ‘Compactification de variétés de Siegel aux places de mauvaise réduction’, Bull. Soc. Math. France 138(2) (2010), 259315.
[56] Stroh, B., ‘Compactification minimale et mauvaise réduction’, Ann. Inst. Fourier. Grenoble 60(3) (2010), 10351055.
[57] Stroh, B., ‘Mauvaise réduction au bord’, in Bost et al. [ 5 ], 269–304.
[58] Tilouine, J., Carayol, H., Harris, M. and Vignéras, M.-F. (Eds.), Formes automorphes (I): actes du Semestre du Centre Émile Borel, printemps 2000, Astérisque, 298 (Société Mathématique de France, Paris, 2005).
[59] Vasiu, A., ‘Integral canonical models of Shimura varieties of preabelian type’, Asian J. Math. 3 (1999), 401518.
[60] Wedhorn, T., ‘Ordinariness in good reductions of Shimura varieties of PEL-type’, Ann. Sci. Éc. Norm. Supér. (4) 32 (1999), 575618.
[61] Zarhin, Y. G., ‘Endomorphisms of abelian varieties and points of finite order in characteristic p ’, Math. Notes 21(6) (1977), 415419.
[62] Zhu, X., ‘On the coherence conjecture of Pappas and Rapoport’, Ann. of Math. (2) 180(1) (2014), 185.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Related content

Powered by UNSILO

COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS

  • KAI-WEN LAN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.