Skip to main content Accessibility help
×
Home

DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS

  • AKSHAY VENKATESH (a1)

Abstract

We describe a graded extension of the usual Hecke algebra: it acts in a graded fashion on the cohomology of an arithmetic group $\unicode[STIX]{x1D6E4}$ . Under favorable conditions, the cohomology is freely generated in a single degree over this graded Hecke algebra.

From this construction we extract an action of certain $p$ -adic Galois cohomology groups on $H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q}_{p})$ , and formulate the central conjecture: the motivic $\mathbf{Q}$ -lattice inside these Galois cohomology groups preserves $H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q})$ .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[1] Allen, P., Le Hung, B., Caraiani, A., Calegari, F., Gee, T., Helm, D., Newton, J., Taylor, R., Thorne, J. and Scholze, P., ‘Potential automorphy over CM fields’, Preprint, http://math.uchicago.edu/ fcale/papers/Ramanujan.pdf.
[2] Bloch, S. and Kato, K., ‘ L-functions and Tamagawa numbers of motives’, inThe Grothendieck Festschrift, Vol. I, Progress in Mathematics, 86 (Birkhäuser Boston, Boston, MA, 1990), 333400.
[3] Borel, A., ‘Stable real cohomology of arithmetic groups’, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235272.
[4] Borel, A., ‘Stable real cohomology of arithmetic groups. II’, inManifolds and Lie groups (Notre Dame, Ind., 1980), Progress in Mathematics, 14 (Birkhäuser, Boston, MA, 1981), 2155.
[5] Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd edn, Mathematical Surveys and Monographs, 67 (American Mathematical Society, Providence, RI, 2000).
[6] Brown, K. S., Cohomology of Groups, Graduate Texts in Mathematics, 87 (Springer, New York, 1994), Corrected reprint of the 1982 original.
[7] Buzzard, K. and Gee, T., ‘The conjectural connections between automorphic representations and Galois representations’, inAutomorphic Forms and Galois Representations, Vol. 1, London Mathematical Society Lecture Note Series, 414 (Cambridge University Press, Cambridge, 2014), 135187.
[8] Calegari, F. and Emerton, M., ‘Completed cohomology—a survey’, inNon-abelian Fundamental Groups and Iwasawa Theory, London Mathematical Society Lecture Note Series, 393 (Cambridge University Press, Cambridge, 2012), 239257.
[9] Calegari, F. and Geraghty, D., ‘Modularity lifting beyond the Taylor-Wiles method’, Invent. Math. 211(1) (2018), 297433.
[10] Calegari, F. and Venkatesh, A., ‘A torsion Jacquet–Langlands correspondence’, Asterisque 409 (2019), https://arxiv.org/abs/1212.3847.
[11] Caraiani, A., Gulotta, D. R., Hsu, C.-Y., Johansson, C., Mocz, L., Reinecke, E. and Shih, S.-C., ‘Shimura varieties at level $\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$ and Galois representations’, Preprint, https://arxiv.org/abs/1804.00136.
[12] Chriss, N. and Khuri-Makdisi, K., ‘On the Iwahori-Hecke algebra of a p-adic group’, Int. Math. Res. Not. IMRN (2) (1998), 85100.
[13] Clozel, L., Harris, M. and Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.
[14] Galatius, S. and Venkatesh, A., ‘Derived Galois deformation rings’, Adv. Math. 327 (2018), 470623.
[15] Gee, T., ‘Modularity lifting theorems’, Preprint, http://wwwf.imperial.ac.uk/∼tsg/index_files/ArizonaWinterSchool2013.pdf.
[16] Goresky, M., Kottwitz, R. and MacPherson, R., ‘Equivariant cohomology, Koszul duality, and the localization theorem’, Invent. Math. 131(1) (1998), 2583.
[17] Harris, M. and Venkatesh, A., ‘Derived Hecke algebra for weight one forms’, Exp. Math. 28(3) (2019), 342361.
[18] Huber, A. and Kings, G., ‘A cohomological Tamagawa number formula’, Nagoya Math. J. 202 (2011), 4575.
[19] Kahn, B., ‘On the Lichtenbaum-Quillen conjecture’, inAlgebraic K-Theory and Algebraic Topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 407 (Kluwer Academic Publishers, Dordrecht, 1993), 147166.
[20] van der Kallen, W., ‘Homology stability for linear groups’, Invent. Math. 60(3) (1980), 269295.
[21] Khare, C. B. and Thorne, J. A., ‘Potential automorphy and the Leopoldt conjecture’, Amer. J. Math. 139(5) (2017), 12051273.
[22] Langlands, R. P., ‘Automorphic representations, Shimura varieties, and motives. Ein Märchen’, inAutomorphic Forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, R.I., 1979), 205246.
[23] Murre, J. P., ‘On the motive of an algebraic surface’, J. Reine Angew. Math. 409 (1990), 190204.
[24] Ollivier, R. and Schneider, P., ‘A canonical torsion theory for pro-p Iwahori-Hecke modules’, Adv. Math. 327 (2018), 52127.
[25] Prasanna, K. and Venkatesh, A., ‘Automorphic cohomology, motivic cohomology and the adjoint $L$ -function’, Preprint, 2016, https://arxiv.org/abs/1609.06370.
[26] Quillen, D., ‘On the cohomology and K-theory of the general linear groups over a finite field’, Ann. of Math. (2) 96 (1972), 552586.
[27] Ronchetti, N., ‘A satake homomorphism for the mod $p$ Hecke algebra’, Preprint, 2018,https://arxiv.org/abs/1808.06512.
[28] Schneider, P., ‘Smooth representations and Hecke modules in characteristic p ’, Pacific J. Math. 279(1-2) (2015), 447464.
[29] Scholl, A. J., ‘Integral elements in K-theory and products of modular curves’, inThe Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548 (Kluwer Academic Publ., Dordrecht, 2000), 467489.
[30] Scholze, P., ‘On torsion in the cohomology of locally symmetric varieties’, Ann. of Math. (2) 182(3) (2015), 9451066.
[31] Sella, Y., ‘Comparison of sheaf cohomology and singular cohomology’, Preprint, 2016,arXiv:1602.06674.
[32] Soulé, C., ‘ K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale’, Invent. Math. 55(3) (1979), 251295.
[33] Srinivas, V., Algebraic K-theory, Modern Birkhäuser Classics, 2nd edn , (Birkhäuser Boston, Inc., Boston, MA, 2008).
[34] Treumann, D., ‘Smith theory and geometric Hecke algebras’, Math. Ann. 375 (2019), https://arxiv.org/abs/1107.3798.
[35] Venkatesh, A., ‘Cohomology of arithmetic groups and periods of automorphic forms’, Jpn. J. Math. 12(1) (2017), 132.
[36] Weibel, C., ‘Étale Chern classes at the prime 2’, inAlgebraic K-Theory and Algebraic Topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 407 (Kluwer Acad. Publ., Dordrecht, 1993), 249286.
[37] Yoneda, N, ‘Note on products in Ext’, Proc. Amer. Math. Soc. 9 (1958), 873875.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

DERIVED HECKE ALGEBRA AND COHOMOLOGY OF ARITHMETIC GROUPS

  • AKSHAY VENKATESH (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed