Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T00:17:30.113Z Has data issue: false hasContentIssue false

MECHANISMS OF ANEUPLOIDY INDUCTION IN HUMAN OOGENESIS AND EARLY EMBRYOGENESIS

Published online by Cambridge University Press:  01 May 2007

JOY D A DELHANTY*
Affiliation:
UCL Centre for Preimplantation Genetic Diagnosis, Institute of Women's Health, University College London.
*
UCL Centre for Preimplantation Genetic Diagnosis, Institute of Women's Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, United Kingdom.

Extract

Reproductive failure is relatively common in humans compared with other mammalian species that have been studied. In young couples that are trying to conceive, the fecundity rate, (probability of achieving a clinically recognised pregnancy within a monthly cycle) is about 25%. The major cause of implantation failure in humans after both in vivo and in vitro fertilisation is now thought to be the high incidence of chromosomal abnormality.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wilcox, AJ, Weinberg, CR, O'Connor, JF, Baird, DD, Schlatterer, JP, Canfield, RE et al. Incidence of early loss of pregnancy. New Engl J Med 1988; 319: 189–94.CrossRefGoogle ScholarPubMed
2Edwards, RG, Brody, SA. Principles and Practice of Assisted Human Reproduction. 1995; WB Saunders Co, Philadelphia, USA.Google Scholar
3Bonde, JPE, Ernst, E, Jenson, TK, Hjollund, NHI, Kolstad, H, Henrikson, TB, et al. Relation between semen quality and fertility: a population based study of 430 first-pregnancy planners. Lancet 1998; 352, 1172–177.CrossRefGoogle ScholarPubMed
4Hassold, T: Chromosome abnormalities in human reproduction. Trends in Genetics 1986; 2: 105110.CrossRefGoogle Scholar
5Menashe, J, Levy, B, Hirschhorn, K, Kardon, NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Medicine 2005; 7; 251–63CrossRefGoogle Scholar
6Delhanty, JDA, Harper, JC, Ao, A, Handyside, AH, Winston, RML. Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 1997; 99: 755–60.CrossRefGoogle ScholarPubMed
7Munné, S, Magli, C, Bahce, M, Fung, J, Legator, M, Morrison, L et al. Preimplantation diagnosis of the aneuploidies most commonly found in spontaneous abortions and live births: XY, 13, 14, 15, 16, 18, 21, 22. Prenat Diagn 1998; 18: 1459–466.3.0.CO;2-V>CrossRefGoogle Scholar
8Lynn, A, Ashely, T, Hassold, T. Variation in human meiotic recombination. Ann Rev Genomics Hum Genet 2004; 5: 317–49.CrossRefGoogle ScholarPubMed
9Orr Weaver, T.Meiotic nondisjunction does the two-step. Nat Genet 1996; 14: 374–76.CrossRefGoogle ScholarPubMed
10Lenzi, ML, Smith, J, Snowden, T, Kim, M, Fishel, R, Poulos, BK, et al. Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis I in human oocytes. Am J Hum Genet 2005; 76: 112–27.CrossRefGoogle Scholar
11Kong, A, Barnard, J, Gudbjartsson, DF, Thorleifsson, G, Jonsdottir, G, Sigurdardottir, S, et al. Recombination rate and reproductive success un humans. Nature Genet 2004; 36: 1203–206.CrossRefGoogle Scholar
12Morelli, M. Cohen, P. Not all germ cells are created equal: Aspects of sexual dimorphism in mammalian meiosis. Reproduction 2005; 130: 761–81.CrossRefGoogle ScholarPubMed
13Templado, C, Bosch, M, Benet, J. Frequency and distribution of chromosome abnormalities in human spermatozoa. Cytogenet Genome Res 2005; 111: 199205.CrossRefGoogle ScholarPubMed
14Pellestor, F, Andréo, B, Arnal, F, Humeau, C, Demaille, J. Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1397 in-vitro unfertilised oocytes. Hum Reprod 2002; 17: 2134–145.CrossRefGoogle Scholar
15Fragouli, E, Wells, D, Thornhill, A, Serhal, P, Faed, MJW, Harper, JC et al. Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum Reprod 2006; 21: 2319–328.CrossRefGoogle ScholarPubMed
16Gras, I, McBain, J, Trounson, A, Kola, I. The incidence of chromosomal aneuploidy in stimulated and unstimulated (natural) uninseminated human oocytes Hum Reprod 1992; 7: 1396–401.CrossRefGoogle ScholarPubMed
17Almeida, PA, Bolton, VN. The relationship between chromosomal abnormalities in the human oocyte and fertilization in vitro. Hum Reprod 1994; 9: 343–46.CrossRefGoogle ScholarPubMed
18Hassold, T, Hunt, P. To err (meiotically) is human: studies of the genesis of human aneuploidy Nat Rev Genet 2001; 2: 280–91.CrossRefGoogle Scholar
19Angell, RR. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man Hum Genet 1991; 86: 383–87.CrossRefGoogle Scholar
20Sandalinas, M, Marquez, C, Munné, S. Spectral karyotyping of fresh, non-inseminated oocytes. Mol Hum Reprod 2002; 8: 580–85.CrossRefGoogle ScholarPubMed
21Clyde, JM, Hogg, JE, Rutherford, AJ, Picton, HM. Karyotyping of human metaphase II oocytes by Multifluor fluorescence in situ hybridisation. Fertil Steril 2003; 80: 10031011.CrossRefGoogle Scholar
22Mahmood, R, Brierley, CH, Faed, MJW, Mills, JA, Delhanty, JDA. Mechanisms of maternal aneuploidyFISH analysis of oocytes and polar bodies in patients undergoing assisted conception. Hum Genet 2000; 106: 620–26.CrossRefGoogle ScholarPubMed
23Cupisti, S, Conn, CM, Fragouli, E, Whalley, K, Mills, JA, Faed, MJW et al. Sequential FISH analysis of oocytes and polar bodies reveals aneuploidy mechanisms. Prenat Diagn 2003; 23: 663–68.CrossRefGoogle ScholarPubMed
24Pujol, A, Boiso, I, Benet, J, Veiga, A, Durban, M, Campillo, M, et al. Analysis of nine chromosome probes in first polar bodies and metaphase II oocytes for the detection of aneuploidies. European J Hum Genet 2003; 11: 325–36.CrossRefGoogle ScholarPubMed
25Cozzi, J, Conn, CM, Harper, JC, Winston, RML, Delhanty, JDA. A trisomic germ cell line and precocious chromatid separation leads to recurrent trisomy 21 conception. Hum Genet 1999; 104: 2328.CrossRefGoogle Scholar
26Gutiérrez Mateo, C, Wells, D, Benet, J, Sánchez García, JF, Bermúdez, MG, Belil, I et al. Reliability of comparative genomic hybridization to detect chromosome abnormalities in first polar bodies and metaphase II oocytes. Human Reprod 2004; 19: 2118–125.CrossRefGoogle ScholarPubMed
27Gutiérrez Mateo, C, Benet, J, Wells, D, Colls, P, Bermúdez, MG, Sánchez García, JF et al. Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Human Reprod 2004; 19: 2859–868.CrossRefGoogle ScholarPubMed
28Fragouli, E, Wells, D, Whalley, KM, Mills, JA, Faed, MJW, Delhanty, JDA. Increased susceptibility to maternal aneuploidy demonstrated by comparative genomic hybridisation of human MII oocytes and 1st polar bodies. Cytogen Genome Res 2006; 114: 3038.CrossRefGoogle Scholar
29Fragouli, E, Wells, D, Doshi, A, Gotts, S, Harper, JC, Delhanty, JDA. Complete cytogenetic investigation of oocytes from a young woman with the use of comparative genomic hybridisation reveals meiotic errors. Prenat Diagn 2006; 26: 7176.CrossRefGoogle Scholar
30Anahory, T, Andreo, B, Regnier Vigoroux, G, Soulie, JP, Baudouin, M, Demaille, J et al. Sequential multiple probe fluorescence in-situ hybridization analysis of human oocytes and polar bodies by combining centromeric labelling and whole chromosome painting. Mol Hum Reprod 2003; 9: 577–85.CrossRefGoogle ScholarPubMed
31Munné, S, Bahçe, M, Sandalinas, M, Escudero, T, Márquez, C, Veilla, E et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online Online 2004; 8: 8190CrossRefGoogle ScholarPubMed
32Mantzouratou, A, Mania, A, Fragouli, E, Xanthopolou, L, Tashkandi, S, Fordham, K et al. Variable aneuploidy mechanisms in embryos from couples with poor reproductive histories undergoing preimplantation genetic screening. Hum Reprod 2007; In Press.CrossRefGoogle Scholar
33Delhanty, JDA, Griffin, DK, Handyside, AH. Detection of aneuploidy and chromosomal mosaicism in human embryos during preimplantation sex determination by fluorescent in situ hybridisation (FISH) Hum Mol Genet 1993; 2: 1183–185.CrossRefGoogle ScholarPubMed
34Munné, S, Lee, A, Rosenwaks, Z, Grifo, J, Cohen, J. Diagnosis of major aneuploidies in human preimplantation embryos Hum Reprod 1993; 8: 2185–192.CrossRefGoogle ScholarPubMed
35Munné, S, Fung, J, Marquez, C, Weier, HUG. Preimplantation genetic analysis of translocations: case-specific probes for interphase cell analysis. Hum Genet 1998; 102: 663–74.CrossRefGoogle ScholarPubMed
36Harper, JC, Coonen, E, Handyside, AH, Winston, RML, Hopman, AHN, Delhanty, JDA: Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat Diagn 1995; 15: 4149.CrossRefGoogle ScholarPubMed
37Delhanty, JDA, Harper, JC, Asangla, A, Handyside, AH, Winston, RML. Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 1997; 99: 755–60.CrossRefGoogle ScholarPubMed
38Voullaire, L, Slater, H, Williamson, R, Wilton, L.: Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet 2000; 106: 210–17.CrossRefGoogle ScholarPubMed
39Wells, D, Delhanty, JDA. Comprehensive chromosomal analysis of human reproduction using whole genome amplification and single cell comparative genomic hybridisation. Mol Hum Reprod 2000; 6: 1055–62.CrossRefGoogle Scholar
40Delhanty, JDA, Handyside, AH. The origin of genetic defects in the human and their detection in preimplantation embryo. Hum Reprod Update 1995; 1: 201–15.CrossRefGoogle ScholarPubMed
41Lebedev, IN, Ostroverkhova, NV, Nikitina, TV, Sukhanova, NN, Nazarenko, SA. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Europ J Hum Genet 2004; 12: 513–20.CrossRefGoogle ScholarPubMed
42Fisher, JM, Harvey, JF, Morton, NE, Jacobs, PA. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction Am J Hum Genet 1995; 56: 669675.Google ScholarPubMed
43Robinson, WP, Kuchinka, BD, Bernasconi, F, Petersen, MB, Schultze, A, Brondum Nielsen, K et al. Maternal meiosis I non-disjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Human Molec Genet 1998; 7: 10111019.CrossRefGoogle ScholarPubMed
44Ruangvutilert, P, Delhanty, JDA, Rodeck, CH, Harper, JC. Relative efficiency of FISH on metaphase and interphase nuclei from non-mosaic trisomic or triploid fibroblast cultures. Prenat Diagn 2000; 20: 159–62.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
45Daphnis, DD, Delhanty, JDA, Jerkovik, S, Geyer, J, Craft, I, Harper, JC. Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum Reprod 2004; 20: 129137.CrossRefGoogle ScholarPubMed
46Munné, S, Sandalinas, M, Escudero, T, Marquez, C, Cohen, J. Chromosome mosaicism in cleavage-stage human embryos: evidence of a maternal age effect. Reprod Biomed Online 2002; 4: 223–32.CrossRefGoogle ScholarPubMed
47Coonen, E, Derhaag, JG, Dumoulin, JC, Van Wissen, LC, Bras, M, Janssen, M, et al.Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Hum Reprod 2004; 19: 316–24.CrossRefGoogle ScholarPubMed
48Katz Jaffe, MG, Trounson, AO, Cram, DS. Mitotic errors in chromosome 21 of human preimplantation embryos are associated with non-viability. Mol Hum Reprod 2004; 10: 143–47.CrossRefGoogle ScholarPubMed
49Wells, D, Bermudez, MG, Steuerwald, N, Thornhill, AR, Malter, H, Delhanty, JDA et al. Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Hum Reprod 2005; 20: 1339–348.CrossRefGoogle ScholarPubMed
50Voullaire, L, Wilton, L, McBain, J, Callaghan, T, Williamson, R: Chromosome abnormalities identified by comparative genomic hybridization in embryos from women with repeated implantation failure. Mol Hum Reprod 2002; 8: 1035–41.CrossRefGoogle ScholarPubMed
51Simopoulou, M, Harper, JC, Fragouli, E, Mantzouratou, A, Speyer, BE, Serhal, P, et al.Preimplantation Genetic Diagnosis of Chromosome Abnormalities: Implications from the Outcome for Couples with Chromosomal Rearrangements. Prenat Diagn 2003; 23: 652–62.CrossRefGoogle ScholarPubMed
52Conn, CM, Harper, JC, Winston, RML, Delhanty, JDA. Infertile couples with Robertsonian translocations: Preimplantation genetic analysis of embryos reveals chaotic cleavage divisions. Hum Genet 1998; 102: 117–23.CrossRefGoogle ScholarPubMed
53Van Assche, E, Staessen, C, Vegetti, W, Bonduelle, M, Vandervost, M, Van Steirghem, A et al. Preimplantation Genetic Diagnosis and sperm analysis by fluorescent in-situ hybridisation for the most common reciprocal translocation t(11;22). Mol Hum Reprod 1999; 5: 682–90.CrossRefGoogle ScholarPubMed
54Iwarsson, E, Malmgren, H, Inzunza, J, Ährlund-Richter, L, Sjöblom, P, Rosenlund, B et al. Highly abnormal cleavage divisions in preimplantation embryos from translocation carriers. Prenat Diagn 2000 20: 10381047.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
55Bielanska, M, Lin Tan, S, Ao, A. Different probe combinations for assessment of postzygotic chromosomal imbalances in human embryos. J Assist Reprod Genet 2002; 19: 177181CrossRefGoogle ScholarPubMed