Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-28T22:06:37.724Z Has data issue: false hasContentIssue false

The fetal allograft

Published online by Cambridge University Press:  10 October 2008

CWG Redman*
Affiliation:
John Radcliffe Hospital, Oxford, UK
*
CWG Redman, Reader in Obstetric Medicine, Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, Oxford OX3 9DU, UK.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Medawar, PB. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symposium of the Society of Experimental Biology 1954; 7: 320–37.Google Scholar
2 Bulmer, BulmerJ, Johnson, PM. Antigen expression by trophoblast populations in the human placenta and their possible immunobiological relevance. Placenta 1985; 6: 127–40.CrossRefGoogle ScholarPubMed
3 Pijnenborg, R, Bland, JM, Robertson, WB, Dixon, G, Brosens, I. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta 1981; 2: 303–16.CrossRefGoogle ScholarPubMed
4 Douglas, GW, Thomas, L, Carr, M, Cullen, M, Morris, R. Trophoblast in the circulating blood during pregnancy. Am J Obstet Gynecol 1959; 78: 960–73.CrossRefGoogle ScholarPubMed
5 Kozma, R, Spring, J, Johnson, PM, Adinolfi, M. Detection of syncytiotrophoblast in maternal peripheral and uterine veins using a monoclonal antibody and flow cytometry. Hum Reprod 1986; 5: 335–36.CrossRefGoogle Scholar
6 Thomas, L, Douglas, GW, Carr, M. The continual migration of syncytial trophoblasts from the fetal placenta into the maternal circulation. Trans Assoc Am Phys 1959; 72: 140–48.Google Scholar
7 Luz, NP, Crottogini, JJ, Negrete, VS. A method for identification of chorionic villi in peripheral blood of pregnant women. Am J Obstet Gynecol 1966; 94: 1079–84.CrossRefGoogle ScholarPubMed
8 Goodfellow, CF, Taylor, PV. Extraction and identification of trophoblast cells circulating in peripheral blood during pregnancy. Br J Obstet Gynaecol 1982; 89: 6568.CrossRefGoogle ScholarPubMed
9 Covone, AE, Mutton, D, Johnson, PM, Adinolfi, M. Trophoblast cells in peripheral blood from pregnant women. Lancet 1984; ii: 841–43.CrossRefGoogle Scholar
10 Pool, C, Aplin, JD, Taylor, GM, Boyd, RDH. Trophoblast cells and maternal blood. Lancet 1987; i: 804805.CrossRefGoogle Scholar
11 Covone, AE, Kozma, R, Johnson, PM, Latt, S, Adinolfi, M. Analysis of peripheral maternal blood samples for the presence of placenta-derived cells using Y-specific probes and McAb H315. Prenatal Diag 1988; 8: 591607.CrossRefGoogle Scholar
12 Attwood, HD, Park, WW. Embolism to the lungs by trophoblast. J Obstet Gynaecol Br Commonw 1961; 68: 611–17.CrossRefGoogle Scholar
13 Cameron, HM, Park, WW. Decidual tissue within the lung. J Obstet Gynaecol Br Commonw 1965; 72: 748–54.CrossRefGoogle ScholarPubMed
14 Zipursky, A, Pollock, J, Neelands, P, Chown, B, Israels, LG. The transplacental passage of foetal red blood-cells and the pathogenesis of Rh immunisation during pregnancy. Lancet 1963; ii: 489–93.CrossRefGoogle Scholar
15 Woodrow, JC, Finn, R. Transplacental haemorrhage. Br J Haematol 1966; 12: 297309.CrossRefGoogle ScholarPubMed
16 Fairweather, DVI, Walker, W. Obstetrical considerations in the routine use of amniocentesis in immunised Rh negative women. J Obstet Gynaecol Br Commonw 1964; 71: 4853.CrossRefGoogle Scholar
17 Samet, S, Bowman, HS. Fetomaternal ABO incompatibility: intravascular hemolysis, fetal hemoglobinemia and fibrinogenopenia in maternal circulation. Am J Obstet Gynecol 1961; 81: 4956.CrossRefGoogle Scholar
18 Szulman, AE. The A, B and H blood-group antigens in human placenta. N Engl J Med 1972; 286: 1028–31.CrossRefGoogle Scholar
19 Walknowska, J, Conte, FA, Grumbach, MM. Practical and theoretical implications of fetal/maternal lymphocyte transfer. Lancet 1969; i: 1119–22.CrossRefGoogle Scholar
20 Schröder, J, Tiilikainen, A, de la Chapelle, A. Fetal leukocytes in the maternal circulation after delivery. Transplantation 1975; 17: 346–54.CrossRefGoogle Scholar
21 Herzenberg, LA, Bianchi, DW, Schröder, J, Cann, HM, Iverson, GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA 1979; 76: 1453–55.CrossRefGoogle ScholarPubMed
22 Adinolfi, M, Gorvette, DP. The transfer of lymphocytes through the human placenta. In: Centaro, A, Carretti, N eds, Immunology in Obstetrics and Gynaecology 1973; Excerpta Medica: 177–82.Google Scholar
23 Tuffrey, M, Bishun, NP, Barnes, RD. Porosity of the placenta to maternal cells in normally derived mice. Nature 1969; 224: 701704.CrossRefGoogle Scholar
24 Billington, WD, Kirby, DRS, Owen, JJT et al. Placental barrier to maternal cells. Nature 1969; 224: 704706.CrossRefGoogle Scholar
25 Hunziker, RD, Gambel, P, Wegmann, TG. Placenta as a selective barrier to cellular traffic. J Immunol 1984; 133: 667–71.CrossRefGoogle Scholar
26 Turner, JH, Wald, N, Quinlivan, WLG. Cytogenetic evidence concerning possible transplacental transfer of the leukocytes in pregnant women. Am J Obstet Gynecol 1966; 95: 3133.CrossRefGoogle ScholarPubMed
27 Anderson, JM, Ferguson-Smith, MA. Nature's transplant. Br Med J 1971; 2: 166–67.CrossRefGoogle ScholarPubMed
28 Olding, LB, Oldstone, MBA. Lymphocytes from human newborns abrogate mitosis of their mother's lymphocytes. Nature 1974; 249: 161–62.CrossRefGoogle ScholarPubMed
29 Adinolfi, M. Inhibition of mitosis of maternal lymphocytes by fetal cells. Lancet 1976; i: 97.CrossRefGoogle Scholar
30 Mengert, WF, Rights, CS, Bates, CR, Reid, AF, Wolf, GR, Nabors, GC. Placental transmission of erythrocytes. Am J Obstet Gynecol 1955; 69: 678–83.CrossRefGoogle ScholarPubMed
31 Macris, NT, Hellman, LM, Watson, RJ. The transmission of transfused sickle-trait cells from mother to fetus. Am J Obstet Gynecol 1958; 76: 1214–18.CrossRefGoogle Scholar
32 Desai, RG, Creger, WP. Maternofetal passage of leukocytes and platelets in man. J Haematol 1963; 21: 665.Google ScholarPubMed
33 Rigby, PG, Hanson, T, Smith, R. Passage of leukemia cells across the placenta. N Engl J Med 1964; 271: 124–27.CrossRefGoogle ScholarPubMed
34 Bowman, JM, Lewis, M, De Sa, DJ. Hydrops fetalis caused by massive maternofetal haemorrhage. Pediatrics 1984; 104: 769–72.Google Scholar
35 Miyagawa, Y. Further characterisation of IgM antibodies against maternal alloreactive T cells produced by cloned Epstein Barr virus-transformed cord B cells. J Immunol 1984; 133: 1270–77.CrossRefGoogle ScholarPubMed
36 Claas, FHJ, Gijbels, Y, van der Velden-de Munck, J, van Rood, JJ. Induction of B cell unresponsiveness to non-inherited maternal HLA antigens during fetal life. Science 1988; 241: 1815–17.CrossRefGoogle Scholar
37 Kohler, PF, Farr, RS. Elevation of cord over maternal IgG immunoglobulin: evidence for an active placental IgG transport. Nature 1966; 210: 1070–71.CrossRefGoogle ScholarPubMed
38 Pitcher-Wilmott, RW, Hindocha, P, Wood, CBS. The placental transfer of IgG subclasses in human pregnancy. Clin Exp Immunol 1980; 41: 303308.Google ScholarPubMed
39 Bodmer, J, Bodmer, W. Histocompatibility 1984. Immunol Today 1984; 5: 251–54.CrossRefGoogle ScholarPubMed
40 Goodenow, RS, McMillan, M, Nicolson, M et al. Identification of the class I genes of the mouse major histocompatibility complex by DNA-mediated gene transfer. Nature 1982; 300: 231–37.CrossRefGoogle ScholarPubMed
41 Koller, BH, Geraghty, DE, DeMars, R, Duvick, L, Rich, SS, Orr, HT. Chromosomal organization of the human major histocompatibility complex class I gene family. J Exp Med 1989; 169: 469–80.CrossRefGoogle ScholarPubMed
42 Bjorkman, PJ, Saper, MA, Samraoui, B, Bennett, WS, Strominger, JL, Wiley, DC. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987; 329: 512–18.CrossRefGoogle Scholar
43 Bouillot, M et al. Physical association between MHC class I molecules and immunogenic peptides. Nature 1989; 339: 473–75.CrossRefGoogle ScholarPubMed
44 Zinkernagel, RM, Doherty, PC. MHC-restricted cytotoxic T cells. Studies on the biological role of polymorphic major transplantation antigens during T cell restriction: specificity, function and responsiveness. Adv Immunol 1979; 27: 51177.Google Scholar
45 McDonald, HR. Differentiation of cytolytic T lymphocytes. Immunol Today 1982; 3: 183–87.CrossRefGoogle Scholar
46 Jacob, F. Mouse teratocarcinoma and embryonic antigens. Immunol Rev 1977; 33: 332.CrossRefGoogle ScholarPubMed
47 Shedlovsky, A, Clipson, LJ, Van de Berg, JL, Dove, WF. Strong teratocarcinoma transplantation loci, Gt-1 and Gt-2, flank H-2. Immunogenetics 1981; 13: 413–19.CrossRefGoogle ScholarPubMed
48 Croce, CH, Linnenbach, A, Huebner, K et al. Control of expression of histocompatibility antigens (H-2) and β2-microglobulin in F9 teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 5754–58.CrossRefGoogle Scholar
49 Faulk, WP, Temple, A. Distribution of β2-microglobulin and HLA in chorionic villi of human placentae. Nature 1976; 262: 799802.CrossRefGoogle ScholarPubMed
50 Goodfellow, PN, Barnstable, CJ, Bodmer, WF, Snary, D, Crumpton, MJ. Expression of HLA system antigens on placenta. Transplantation 1976; 22: 595603.CrossRefGoogle ScholarPubMed
51 Sunderland, CA, Naiem, M, Mason, DY, Redman, CWG, Stirrat, GM. The expression of major histo-compatibility antigens by human chorionic villi. J Reprod Immunol 1981; 3: 323–31.CrossRefGoogle Scholar
52 Hunt, JS, Fishback, JL, Andrews, GK, Wood, GW. Expression of class I HLA genes by trophoblast cells. Analysis by in situ hybridization. J Immunol 1988; 140: 1293–99.CrossRefGoogle Scholar
53 Sunderland, CA, Redman, CWG, Stirrat, GM. HLA A, B, C antigens are expressed on nonvillous trophoblast of the early human placenta. J Immunol 1981; 127: 2614–15.CrossRefGoogle Scholar
54 Redman, CWG, McMichael, AJ, Stirrat, GM, Sunderland, CA, Ting, A. Class I major histocompatibility antigens on human extravillous trophoblast. Immunology 1984; 52: 457–68.Google Scholar
55 Hsi, B-L, Yeh, C-J G, Faulk, WP. Class I antigens of the major histocompatibility complex on cytotrophoblast of human chorion laeve. Immunology 1984; 52: 621–29.Google ScholarPubMed
56 Wells, M, Hsi, B-L, Faulk, WP. Class I antigens of the major histocompatibility complex on cytotrophoblast of the human placental basal plate. Am J Reprod Immunol 1984; 6: 167–74.CrossRefGoogle ScholarPubMed
57 Sasagawa, M, Ohmomo, Y, Kanazawa, K, Takeuchi, S. HLA expression by trophoblast of invasive moles. Placenta 1987; 8: 111–18.CrossRefGoogle ScholarPubMed
58 Trowsdale, J, Travers, P, Bodmer, WF, Patillo, RA. Expression of HLA-A, -B, and -C and β2-microglobulin antigens in human choriocarcinoma cell lines. J Exp Med 1980; 152: 11S17S.Google Scholar
59 Wallach, D, Fellous, M, Revel, M. Preferential effect of gamma interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature 1982; 299: 833–36.CrossRefGoogle ScholarPubMed
60 Anderson, DJ, Berkowitz, RS. γ-interferon enhances expression of class I MHC antigens in the weakly HLA+ human choriocarcinoma cell line BeWo, but does not induce MHC expression in the HLA-choriocarcinoma cell line Jar. J Immunol 1985; 135: 24982501.CrossRefGoogle Scholar
61 Hunt, JS, Andrews, GK, Wood, GS. Normal trophoblasts resist induction of class I HLA. J Immunol 1987; 138: 2481–87.CrossRefGoogle ScholarPubMed
62 Ellis, SA, Sargent, IL, Redman, CWG, McMichael, AJ. Evidence for a novel HLA antigen on human extra-villous trophoblast and a choriocarcinoma cell line. Immunology 1986; 59: 595603.Google Scholar
63 Galbraith, RM, Kantor, RRS, Ferrara, GB, Ades, EW, Galbraith, GMP. Differential anatomical expression of transplantation antigens within the normal human placental chorionic villus. Am J Reprod Immunol 1981; 1: 331–35.CrossRefGoogle Scholar
64 Chatterjee-Hasrouni, S, Lala, PK. Localisation of H-2 antigens on mouse trophoblast cells. J Exp Med 1979; 149: 1238–53.CrossRefGoogle ScholarPubMed
65 Jenkinson, EJ, Searle, RF. la antigen expression on the developing mouse embryo and placenta. J Reprod Immunol 1979; 1: 310.CrossRefGoogle Scholar
66 Starkey, PM. Reactivity of human trophoblast with and antibody to the HLA class II antigen, HLA-DP. J Reprod Immunol 1987; 11: 6370.CrossRefGoogle Scholar
67 Sutton, L, Mason, DY, Redman, CWG. HLA-DR positive cells in the human placenta. Immunology 1983; 49: 103–12.Google ScholarPubMed
68 Bulmer, JN, Johnson, PM. Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol 1984; 57: 393403.Google ScholarPubMed
69 Sutton, L, Gadd, M, Mason, DY, Redman, CWG. Cells-bearing class II MHC antigens in the human placenta. Immunology 1986; 58: 2329.Google ScholarPubMed
70 Johnson, PM. Immunobiology of the human trophoblast. In: Crighton, DB ed, Immunological aspects of reproduction in mammals. Butterworths, 1984: 109–31.CrossRefGoogle Scholar
71 Johnson, PM, Cheng, HM, Molloy, CM, Stern, CMM, Slade, MB. Human trophoblast-specific surface antigens identified using monoclonal antibodies. Am J Reprod Immunol 1981; 1: 246–54.CrossRefGoogle Scholar
72 Kajino, T, McIntyre, JA, Faulk, WP. Antigens of human trophoblast: trophoblast-lymphocyte cross-reactive antigens on platelets. Am J Reprod Immunol 1987; 14: 7078.CrossRefGoogle Scholar
73 McIntyre, JA. In search of trophoblast-lymphocyte crossreactive (TLX) antigens. Am J Reprod Immunol 1988; 17: 100–10.CrossRefGoogle ScholarPubMed
74 McIntyre, JA, Faulk, WP. Allotypic trophoblast-lymphocyte cross-reactive (TLX) cell surface antigens. Hum Immunol 1982; 4: 2735.CrossRefGoogle ScholarPubMed
75 Stern, PL, Beresford, N, Thompson, S, Johnson, PM, Webb, PD, Hole, N. Characterization of the human trophoblast-leukocyte antigenic molecules defined by a monoclonal antibody. J Immunol 1986; 137: 1604–09.CrossRefGoogle ScholarPubMed
76 Macleod, AM, Stewart, KN, Catto, GRD, McIntyre, JA. Immunological studies of trophoblast antigens: no evidence for human leukocyte antigen (HLA) linkage. Am J Reprod Immunol 1989; 19: 1116.CrossRefGoogle ScholarPubMed
77 Faulk, WP, Yeager, C, McIntyre, JA, Ueda, M. Oncofoetal antigens of human trophoblast. Proc Roy Soc, Lond, Series B, 1979; 206: 163–82.Google Scholar
78 Hamilton, TA, Wada, HG, Sussman, HH. Expression of human placental cell surface antigens on peripheral blood lymphocytes and lymphoblastoid cell lines. Scand J Immunol 1980; 11: 195201.CrossRefGoogle ScholarPubMed
79 Loke, YW, Whyte, A, Davies, SP. Differential expression of trophoblast-specific membrane antigens by normal and abnormal human placentae and by neoplasms of trophoblastic and non-trophoblastic origin. Int J Cancer 1980; 25: 459–61.CrossRefGoogle ScholarPubMed
80 Shah, LCP, Ogbimi, AO, Johnson, PM. A cell membrane antigen expressed by both human breast carcinoma cells and normal human trophoblast. Placenta 1980; 1: 299307.CrossRefGoogle ScholarPubMed
81 Beral, V. Parity and susceptibility to cancer. In: Fetal antigens and cancer. Ciba Foundation Symposium 96. London: Pitman, 1983; 182203.Google Scholar
82 Stirrat, GM, Sunderland, CA, Redman, CWG. Human reproductive immunology-elucidation by monoclonal antibody techniques. Obstetrics and Gynecology Annual 1983; 12: 4359.Google ScholarPubMed
83 Harris, H. Multilocus enzyme systems and the evolution of gene expression: the alkaline phosphatases as a model example. The Harvey Lectures 1982; 76: 95124.Google Scholar
84 Galbraith, GMP, Galbraith, RM, Temple, A, Faulk, WP. Demonstration of transferrin receptors on human placental trophoblast. Blood 1980; 55: 240–42.CrossRefGoogle ScholarPubMed
85 Hole, N, Stern, PL. A 72kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer 1988; 57: 239–46.CrossRefGoogle Scholar
86 Feizi, T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 1985; 314: 5357.CrossRefGoogle ScholarPubMed
87 Hook, M, Kjellen, L, Johansson, S, Robinson, J. Cell-surface glycosaminoglycans. Annu Rev Biochem 1984; 53: 847–69.CrossRefGoogle ScholarPubMed
88 Comper, WD, Laurent, TC. Physiological function of connective tissue polysaccharides. Physiol Rev 1978; 58: 255315.CrossRefGoogle ScholarPubMed
89 Sunderland, CA, Bulmer, JN, Luscombe, M, Redman, CWG, Stirrat, GM. Immunohistological and biochemical evidence for a role for hyaluronic acid in the growth and development of the placenta. J Reprod Immunol 1986; 8: 197212.CrossRefGoogle Scholar
90 Toole, BP, Biswas, C, Gross, B. Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci USA 1979; 76: 62996303.CrossRefGoogle ScholarPubMed
91 Bulmer, JN, Sunderland, CA. Immunohistological characterisation of lymphoid cell populations in the early human placental bed. Immunology 1984; 52: 349–57.Google ScholarPubMed
92 Ritson, A, Bulmer, JN. Endometrial granulocytes in human decidua react with a natural-killer (NK) cell marker, NKH1. Immunology 1987; 62: 329–31.Google ScholarPubMed
93 Horwitz, DA, Bakke, AC. An Fc receptor-bearing third population of human mononuclear cells with cytotoxic and regulatory function. Immunol Today 1984; 5: 148–53.CrossRefGoogle Scholar
94 Stern, P, Gidlund, M, Orn, A, Wigzell, H. Natural killer cells mediate lysis of embryonal carcinoma cells lacking MHC. Nature 1980; 285: 341–42.CrossRefGoogle ScholarPubMed
95 Gregory, CD, Atkinson, ME. Large granular lymphocytes: early non-specific effector cells in allograft rejection in the mouse. Immunology 1984; 53: 257–65.Google Scholar
96 Abruzzo, LV, Rowley, DA. Homeostasis of the antibody response: immunoregulation by NK cells. Science 1983; 222: 581–85.CrossRefGoogle ScholarPubMed
97 Starkey, PM, Sargent, IL, Redman, CWG. Cell populations in human early pregnancy decidua: characterization and isolation of large granular lymphocytes by flow cytometry. Immunology 1988; 65: 129–34.Google ScholarPubMed
98 King, A, Wellings, V, Gardner, L, Loke, YW. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum Immunol 1989; 24: 195205.CrossRefGoogle ScholarPubMed
99 Nehemiah, JL, Schnitzer, JA, Schulman, H, Novikoff, AB. Human chorionic trophoblasts, decidual cells and macrophages: a histochemical and electron microscopic study. Am J Obstet Gynecol 1981; 140: 261–66.CrossRefGoogle ScholarPubMed
100 Elcock, JM, Searle, RF. Antigen-presenting capacity of mouse decidual tissue and placenta. Am J Reprod Immunol 1985; 7: 99103.CrossRefGoogle ScholarPubMed
101 Dorman, PJ, Searle, RF. Alloantigen presenting capacity of human decidual tissue. J Reprod Immunol 1988; 191: 101–12.CrossRefGoogle Scholar
102 Bulmer, JN, Johnson, PM. The T-lymphocyte population in first trimester human decidua does not express the interleukin-2 receptor. Immunology 1986; 58: 685–87.Google Scholar
103 Blank, M, Nebel, L, Toder, V. Trophoblast does not cause the cytotoxic T lymphocyte generation due to the lack of ability to stimulate interleukin-2 production. Am J Reprod Immunol 1987; 14: 4953.CrossRefGoogle ScholarPubMed
104 Ribbing, SL, Hoversland, RC, Beaman, KD. T suppressor factors play an integral role in preventing fetal rejection. J Reprod Immunol 1988; 14: 8395.CrossRefGoogle ScholarPubMed
105 Unanue, ER, Beller, DI, Lu, CY, Allen, PM. Antigen presentation: comments on its regulation and mechanism. J Immunol 1985; 132: 14.CrossRefGoogle Scholar
106 Ashwell, JD, DeFranco, AL, Paul, WE, Schwartz, RH. Antigen presentation by resting B cells. J Exp Med 1984; 159: 881905.CrossRefGoogle ScholarPubMed
107 Londei, M, Lamb, JR, Bottazzo, GF, Feldmann, M. Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature 1984; 312: 639–41.CrossRefGoogle ScholarPubMed
108 Davies, M. An ELISA for the detection of maternal anti-trophoblast antibodies in human pregnancy. J Immunol Methods 1985; 77: 109–18.CrossRefGoogle ScholarPubMed
109 Davies, M. Antigenic analysis of immune complexes formed in normal human pregnancy. Clin Exp Immunol 1985; 61: 406–15.Google ScholarPubMed
110 Kajino, T, McIntyre, JA, Faulk, WP, Cai, DS, Billington, WD. Antibodies to trophoblast in normal pregnant and secondary aborting women. J Reprod Immunol 1988; 14: 267–82.CrossRefGoogle ScholarPubMed
111 Davies, M, Browne, CM. Anti-trophoblast antibody responses during normal pregnancy. J Reprod Immunol 1985; 7: 285–97.CrossRefGoogle Scholar
112 King, A, Birkby, C, Loke, YW. Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell Immunol 1989; 118: 337–44.CrossRefGoogle Scholar
113 Ferry, B, Starkey, PM, Sargent, IL, Watt, GO, Jackson, M, Redman, CWG. Cell populations in the human early pregnancy decidua: natural killer activity and response to interleukin-2 of NKH-positive large granular lymphocytes Immunology 1990: in press.Google Scholar
114 Overweg, J., Engelfriet, CP. Cytotoxic leucocyte iso-antibodies formed during the first pregnancy. Vox Sang 1969; 16: 97104.Google ScholarPubMed
115 Ahrons, S. HLA-A Antibodies: influence on the human foetus. Tissue Antigens 1971; 1: 121–36.CrossRefGoogle Scholar
116 Winchester, RJ, Fu, SM, Wernet, P, Kunkel, HG, Dupont, B, Jersild, C. Recognition by pregnancy of non-HLA alloantigens selectively expressed on β lymphocytes. J Exp Med 1975; 141: 924–29.CrossRefGoogle Scholar
117 Borelli, I, Amoroso, A, Richiardi, P, Curtoni, ES. Evaluation of different technical approaches for the research of human anti-la alloantisera. Tissue Antigens 1982; 19: 380–87.CrossRefGoogle Scholar
118 Nakajima, H, Mano, Y, Tokunaga, E, Nozue, G. Influence of previous pregnancy on maternal response to foetal antigens. Tissue Antigens 1982; 19: 9294.CrossRefGoogle ScholarPubMed
119 Van der Werf, AJM. Are lymphocytotoxic iso-antibodies produced by the early human trophoblast? Lancet 1971; i: 595.CrossRefGoogle Scholar
120 Vives, J, Gelabert, A, Castillo, R. HLA antibodies and period of gestation: decline in frequency of positive sera during last trimester. Tissue Antigens 1976; 7: 209–12.CrossRefGoogle ScholarPubMed
121 Doughty, RW, Gelsthorpe, K. Some parameters of lymphocyte antibody activity through pregnancy and further eluates of placental material. Tissue Antigens 1976; 8: 4348.CrossRefGoogle ScholarPubMed
122 Tongio, M-M, Mayer, S, Lebec, A. Transfer of HL-A antibodies from the mother to the child. Transplantation 1975; 20: 163–66.Google ScholarPubMed
123 Johnson, PM, Faulk, WP, Wang, A-C. Immunological studies of human placentae: subclass and fragment specificity of binding of aggregated IgG by placental endothelial cells. Immunology 1976; 31: 659–64.Google ScholarPubMed
124 Wood, GW, Bjerrum, K, Johnson, B. Detection of IgG bound within human trophoblast. J Immunol 1982; 129: 1479–84.CrossRefGoogle ScholarPubMed
125 Carr, MC, Stites, DP, Fudenberg, HH. Cellular immune aspects of the human fetalmaternal relationship. 3. Mixed lymphocyte reactivity between related maternal and cord blood lymphocytes. Cell Immunol 1974; 11: 332–41.CrossRefGoogle Scholar
126 Herva, E, Tiilikainen, A. Mixed lymphocyte culture reactions at delivery and in the puerperium. Effects of parity, HLA antigens and maternal serum. Acta Pathol Microbiol Scand 1977; 85: 333–44.Google ScholarPubMed
127 Moen, T, Moen, M, Palbo, V, Thorsby, E. In vitro foeto-maternal lymphocyte responses at delivery: no gross changes in MLC and PLT responsiveness. J Reprod Immunol 1980; 2: 213–24.CrossRefGoogle ScholarPubMed
128 Genetet, N, Genetet, B, Amice, V, Fauchet, R. Allogenic responses in vitro induced by fetomaternal alloimmunisation. Am J Reprod Immunol 1982; 2: 90–96.CrossRefGoogle Scholar
129 Sargent, IL, Redman, CWG, Stirrat, GM. Maternal cell-mediated immunity in normal and pre-eclamptic pregnancy. Clin Exp Immunol 1982; 50: 601609.Google ScholarPubMed
130 Moore, MP, Sargent, IL, Ting, A, Redman, CWG. Maternal cell-mediated immunity in pregnancy–lymphocyte responses of mothers and their non-pregnant HLA identical sisters to paternal HLA. Clin Exp Immunol 1983; 54: 9194.Google ScholarPubMed
131 Sargent, IL, Arenas, J, Redman, CWG. Maternal cell-mediated sensitisation to paternal HLA may occur but is not a regular event in normal human pregnancy. J Reprod Immunol 1987; 10: 111–20.CrossRefGoogle Scholar
132 Damle, NK. Immunoregulatory T cell circuits in man. J Exp Med 1983; 158: 159–73.CrossRefGoogle ScholarPubMed
133 McMichael, AJ, Sasazuki, T. A suppressor T cell in the human mixed lymphocyte reaction. J Exp Med 1977; 146: 368–80.CrossRefGoogle ScholarPubMed
134 Kovithavongs, T, Dossetor, JB. Suppressor cells in human pregnancy. In: Carpenter, CB ed, Clinical histocompatibility testing, Volume 3: Grune and Stratton, 1978: 223–25.Google Scholar
135 Vanderbeeken, Y, Vlieghe, MP, Duchateau, J, Delespesse, G. Suppressor T-lymphocytes in pregnancy. Am J Reprod Immunol 1984; 5: 20–24.CrossRefGoogle ScholarPubMed
136 Bonnard, GD, Lemos, L. The cellular immunity of mother versus child at delivery: sensitization in unidirectional mixed lymphocyte culture and subsequent 51Cr-release cytoxicity test. Transplant Proc 1972; IV: 177–80.Google Scholar
137 Granberg, C, Hirvonen, T, Toivanen, P. Cellmediated lympholysis by human maternal and neonatal lymphocytes: mother's reactivity against neonatal cells and vice versa. J Immunol 1979; 123: 2563–67.CrossRefGoogle ScholarPubMed
138 Larsen, B, Galask, RP. Host-parasite interactions during pregnancy. Obstet Gynecol Surv 1978; 33: 297–318.CrossRefGoogle ScholarPubMed
139 Khuroo, MS, Teli, MR, Skidmore, S, Sofi, MA, Khuroo, MI. Incidence and severity of viral hepatitis in pregnancy. Am J Med 1981; 70: 252–55.CrossRefGoogle ScholarPubMed
140 Brown, ZA, Vontver, LA, Benedetti, J et al. Genital herpes in pregnancy: risk factors associated with recurrences and asymptomatic viral shedding. Am J Obstet Gynecol 1985; 153: 24–30.CrossRefGoogle ScholarPubMed
141 Sakamoto, K, Greally, J, Gilfillan, RF et al. Epstein–Barr virus in normal pregnant women. Am J Reprod Immunol 1982; 2: 217–21.CrossRefGoogle ScholarPubMed
142 Gonik, B, Loo, LS, West, S, Kohl, S. Natural killer cytotoxicity and antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells in human pregnancy. Am J Reprod Immunol 1987; 13: 2326.CrossRefGoogle ScholarPubMed
143 Agatsuma, Y, Fitzpatrick, P, Lele, A, Kaul, A, Ogra, PY. Cell-mediated immunity to cytomegalovirus in pregnant women. Am J Reprod Immunol 1981; 1: 174–79.CrossRefGoogle ScholarPubMed
144 Brunham, RC, Martin, DH, Hubbard, TW et al. Depression of the lymphocyte transformation response to microbial antigens and to phytohemagglutinin during pregnancy. J Clin Invest 1983; 72: 1629–38.CrossRefGoogle ScholarPubMed
145 Beling, CG, Weksler, ME. Suppression of mixed lymphocyte reactivity by human chorionic gonadotrophin. Clin Sci 1974; 18: 537–41.Google ScholarPubMed
146 Clemens, LE, Siiteri, PK, Stites, DP. Mechanism of immunosuppression of progesterone on maternal lymphocyte activation during pregnancy. J Immunol 1979; 122: 1978–85.CrossRefGoogle ScholarPubMed
147 Kobayashi, H, Mori, T, Suzuki, A, Nishimara, T, Hishimoto, H, Harada, M. Suppression of mixed lymphocyte reaction by progesterone and estradiol 17β. Am J Obstet Gynecol 1979; 134: 255–59.CrossRefGoogle ScholarPubMed
148 Sulke, AN, Jones, DB, Wood, PJ. Hormonal modulation of human natural killer cell activity. J Reprod Immunol 1985; 7: 105–10.CrossRefGoogle ScholarPubMed
149 Bernton, EW, Meltzer, MS, Holaday, JW. Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science 1988; 239: 401404.CrossRefGoogle ScholarPubMed
150 McIntyre, JA, Faulk, WP. Trophoblast modulation of maternal allogeneic recognition. Proc Natl Acad Sci USA 1979; 76: 4029–32.CrossRefGoogle ScholarPubMed
151 Degenne, D, Canepa, S, Horowitz, R, Khalfoun, B, Gutman, N, Bardos, P. Effect of human syncytiotrophoblast extract on in vitro proliferative responses. Am J Reprod Immunol 1986; 8: 2026.CrossRefGoogle Scholar
152 Saji, F, Koyama, M, Kamea, T, Negoro, T, Nakamuro, K and Tanizawa, O. Effects of a soluble factor secreted from cultured human trophoblast cells on in vitro lymphocyte reactions. Am J Reprod Immunol 1987; 13: 121–24.CrossRefGoogle ScholarPubMed
153 Skibin, A, Quastel, MR, Kuperman, O, Segal, S. Suppression of lymphocyte activation by a soluble factor released from the human placental chorionic membrane: chemical analysis and functional characterization. J Reprod Immunol 1989; 19: 8591.CrossRefGoogle ScholarPubMed
154 Nicholas, NS, Panayi, GS. Inhibition of interleukin-2 production by retroplacental sera: a possible mechanism for human allograft survival. Am J Reprod Immunol 1985; 9: 6–11.CrossRefGoogle Scholar
155 Bissenden, JG, Ling, NR, MacKintosh, P. Suppression of mixed lymphocyte reactions by pregnancy serum. Clin Exp Immunol 1980; 39: 195202.Google Scholar
156 Clark, DA, Slapsys, AR, Chaput, A, Walker, C, Brierley, J, Daya, S, Rosenthal, K. Immunoregulatory molecules of trophoblast and decidual suppressor cell origin at the materno-fetal interface. Am J Reprod Immunol 1986; 10: 100–104.Google Scholar
157 Daya, S, Clark, DA, Devlin, C, Jarrell, J. Preliminary characterization of two types of suppressor cells in the human uterus. Fertil Steril 1985; 44: 778–85.CrossRefGoogle Scholar
158 Daya, S, Clark, DA, Devlin, C, Jarrell, J, Chaput, A. Suppressor cells in human decidua. Am J Obstet Gynecol 1985; 151: 267–70.CrossRefGoogle ScholarPubMed
159 Golander, A, Zakuth, V, Schecter, Y, Spirer, Z. Suppression of lymphocyte reactivity in vitro by a soluble factor secreted by explants of human decidua. Eur J Immunol 1981; 11: 849–51.CrossRefGoogle ScholarPubMed
160 Nakayama, E, Asano, S, Kodo, H, Miwa, S. Suppression of mixed lymphocyte reaction by cells of first trimester pregnancy endometrium. J Reprod Immunol 1985; 8: 2531.CrossRefGoogle ScholarPubMed
161 Pockley, AG, Mowles, EA, Stoker, RJ, Westwood, OMR, Chapman, MG, Bolton, AE. Suppression of in vitro lymphocyte reactivity to phytohemagglutinin by placental protein 14. J Reprod Immunol 1988; 13: 31–39.CrossRefGoogle ScholarPubMed
162 Sporn, MB, Roberts, AB, Wakefield, LM, Assoian, RK. Transforming growth factor beta: biological function and chemical structure. Science 1986; 233: 532–34.CrossRefGoogle ScholarPubMed
163 Clark, DA, Falbo, M, Rowley, RB, Banwatt, D, Stedronska-Clark, J. Active suppression of host-vs-graft reaction in pregnant mice. ix. Soluble, suppressor activity obtained from allopregnant mouse decidua that blocks the cytolytic effector response to IL-2 is related to transforming growth factor-beta. J Immunol 1988; 141: 3833–40.CrossRefGoogle ScholarPubMed
164 Frolik, CA, Dart, LL, Meyers, CA, Smith, DM, Sporn, MB. Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Soc Acad Sci USA 1983; 80: 3676–80.CrossRefGoogle ScholarPubMed
165 Lu, CY, Changelian, PS, Unanue, ER. α-fetoprotein inhibits macrophage expression of la antigens. J Immunol 1984; 132: 1722–26.CrossRefGoogle Scholar
166 Harris, SJ, Anthony, FW, Jones, DB, Masson, GM. Pregnancy-specific-betal-glycoprotein: effect on lymphocyte proliferation in vitro. J Reprod Immunol 1984; 6: 267–70.CrossRefGoogle ScholarPubMed
167 Stimson, WH. Immunosuppressive effect of pregnancy-associated alpha2-macroglobulin. Lancet 1975; ii: 989.CrossRefGoogle Scholar
168 Fizet, D, Bousquet, J, Piquet, Y, Cabantous, F. Identification of a factor blocking a cellular cytotoxicity reaction in pregnant serum. Clin Exp Immunol 1983; 52: 648–54.Google ScholarPubMed
169 Noonan, FP, Halliday, WJ, Morton, H, Clunie, GJA. Early pregnancy factor is immunosuppressive. Nature 1979; 278: 649–50.CrossRefGoogle ScholarPubMed
170 Morgan, DML, Illei, G. Polyamine-polyamine oxidase interaction: part of maternal protective mechanism against fetal rejection. Br Med J 1980; 280: 1295–97.CrossRefGoogle ScholarPubMed
171 Fizet, D, Bousquet, J. Absence of a factor blocking a cellular cytotoxicity reaction in the serum of women with recurrent abortions. Br J Obstet Gynaecol 1983; 90: 453–56.CrossRefGoogle ScholarPubMed
172 Barrett, DS, Rayfield, LS, Brent, L. Suppression of natural cell-mediated cytotoxicity in man by maternal and neonatal serum. Clin Exp Immunol 1982; 47: 742–48.Google Scholar
173 Greenberg, LJ, Reinsmoen, N, Yunis, EJ. Dissociation of stimulation [MLR-S] and response [MLR-R] in mixed leukocyte culture by serum blocking factors. Transplantation 1973; 16: 520–22.Google Scholar
174 Robert, M, Betuel, H, Revillard, JP. Inhibition of the mixed lymphocyte reaction by sera from multipara. Tissue Antigens 1973; 3: 3956.CrossRefGoogle Scholar
175 Brochier, J, Roitt, IM, Festenstein, H. Inhibition of lymphocyte proliferative responses by anti-HLA-alloantisera. Eur J Immunol 1974; 4: 709–15.CrossRefGoogle Scholar
176 Faulk, WP, Jeannet, M, Creighton, WD, Carbonara, A. Immunological studies of the human placenta. J Clin Invest 1974; 54: 1011–19.CrossRefGoogle ScholarPubMed
177 Jeannet, M, Werner, C, Ramirez, E, Vassalli, P, Faulk, WP. Anti-HLA, anti-human ‘Ia-like’ and MLC blocking activity of human placental IgG. Transplant Proc 1977; 9: 1417–22.Google ScholarPubMed
178 Power, DA, Catto, GRD, Mason, RJ et al. The fetus as an allograft: evidence for protective antibodies to HLA-linked paternal antigens. Lancet 1983; ii: 701704.CrossRefGoogle Scholar
179 MacLeod, AM, Mason, RJ, Stewart, KN et al. Fc-receptor-blocking antibodies develop after blood transfusions and correlate with good graft outcome. Transplant Proc 1983; 15: 1019–21.Google Scholar
180 McIntyre, JA, Faulk, WP. Maternal blocking factors in human pregnancy are found in plasma not serum. Lancet 1979; ii: 821–23.CrossRefGoogle Scholar
181 Jonker, M, Van Leeuwen, A, Van Rood, JJ. Inhibition of the mixed leukocyte reaction by alloantisera in man. II Incidence and characteristics of MLC-inhibiting antisera from multiparous women. Tissue Antigens 1977; 9: 246–58.CrossRefGoogle ScholarPubMed
182 Clarke, B, Kirby, DRS. Maintenance of histocompatibility polymorphisms. Nature 1966; 211: 9991000.CrossRefGoogle ScholarPubMed
183 Wegmann, TG.Placental immunotrophism: maternal T cells enhance placental growth and function. Am J Reprod Immunol 1987; 15: 6770.CrossRefGoogle Scholar
184 Lauritsen, JG, Kristensen, T, Grunnet, N. Depressed mixed lymphocyte culture reactivity in mothers with recurrent spontaneous abortion. Am J Obstet Gynecol 1976; 125: 3539.CrossRefGoogle Scholar
185 Gerencer, M, Kastelan, A. The role of HLA-D region in feto-maternal interaction. Transplant Proc 1983; 15: 893–95.Google Scholar
186 Komlos, L, Zamir, R, Joshua, H, Halbrecht, I. Common HLA antigens in couples with repeated abortions. Clin Immunol Immunopathol 1977; 7: 330–35.CrossRefGoogle ScholarPubMed
187 Beer, AE, Quebbeman, JF, Ayers, JWT, Haines, RF. Major histocompatibility complex antigens, maternal and paternal immune responses, and chronic habitual abortions in humans. Am J Obstet Gynecol 1981; 141: 987–99.CrossRefGoogle ScholarPubMed
188 Kilpatrick, DC. A case of materno-foetal histocompatibility – implications for leucocyte transfusion treatment for recurrent aborters. Scot Med J 1984; 29: 110–12.CrossRefGoogle ScholarPubMed
189 Oksenberg, JR, Persitz, E, Amar, A et al. Mixed lymphocyte reactivity nonresponsiveness in couples with multiple spontaneous abortions. Fertil Steril 1983; 39: 525–29.CrossRefGoogle ScholarPubMed
190 Cauchi, MN, Tait, B, Wilshire, MI et al. Histocompatibility antigens and habitual abortion. Am J Reprod Immunol 1988; 18: 2831.CrossRefGoogle ScholarPubMed
191 Johnson, PM, Barnes, RMR, Hart, CA, Francis, JA. Determinants of immunological responsiveness in recurrent spontaneous abortion. Transplantation 1984; 38: 280–84.CrossRefGoogle ScholarPubMed
192 Smith, JB, Cowchock, FS. Immunological studies in recurrent spontaneous abortions: effects of immunization with paternal mononuclear cells on lymphocytotoxic and mixed lymphocyte reaction blocking antibodies and correlation with sharing of HLA and pregnancy outcome. Am J Reprod Immunol 1988; 14: 99113.CrossRefGoogle ScholarPubMed
193 Gatenby, PA, Moore, H, Cameron, K, Doran, TJ, Adelstein, S. Treatment of recurrent spontaneous abortion by immunization with paternal lymphocytes: correlates with outcome. Am J Reprod Immunol 1989; 19: 2127.CrossRefGoogle ScholarPubMed
194 Ober, C, Elias, S, O'Brien, D, Kostyu, DD, Hauck, WW, Bombard, A. HLA sharing and fertility in Hutterite couples: evidence for prenatal selection against compatible fetuses. Am J Reprod Immunol 1988; 18: 111–15.CrossRefGoogle ScholarPubMed
195 McIntyre, JA, Faulk, WP. Recurrent spontaneous abortion in human pregnancy: results of immunogenetical, cellular and humoral studies. Am J Reprod Immunol 1983; 4: 165–70.CrossRefGoogle ScholarPubMed
196 Unander, AM, Olding, LB. Habitual abortion: parental sharing of HLA antigens, absence of maternal blocking antibody and suppression of maternal lymphocytes. Am J Reprod Immunol 1983; 4: 171–78.CrossRefGoogle Scholar
197 Rocklin, RE, Kitzmiller, JL, Carpenter, CB, Garovoy, MR, David, JR. Maternal-fetal relation. Absence of an immunologic blocking factor from the serum of women with chronic abortions. N Engl J Med 1976; 295: 1209–13.CrossRefGoogle Scholar
198 Stimson, WH, Strachan, AF, Shepherd, A. Studies on the maternal immune response to placental antigens: absence of a blocking factor from the blood of abortion-prone women. Br J Obstet Gynaecol 1979; 86: 4145.CrossRefGoogle ScholarPubMed
199 Takeuchi, S.Immunology of spontaneous abortion and hydatidiform mole. Am J Reprod Immunol 1980; 1: 2328.CrossRefGoogle ScholarPubMed
200 Regan, L. A prospective study of spontaneous abortion. In: Beard, RW, Sharp, F eds, Early pregnancy loss: mechanisms and treatment, Royal College of Obstetricians and Gynaecologists, London: 1987: 2337.Google Scholar
201 Sargent, IL, Wilkins, T, Redman, CWG. Maternal immune responses to the fetus in early pregnancy and recurrent miscarriage. Lancet 1988; ii: 10991104.CrossRefGoogle Scholar
202 Taylor, C, Faulk, WP. Prevention of recurrent abortion with leucocyte transfusions. Lancet 1981; ii: 6870.CrossRefGoogle Scholar
203 Mowbray, JF, Gibbings, C, Liddell, H, Reginald, PW, Underwood, JL, Beard, RW. Controlled trial of treatment of recurrent spontaneous abortion by immunisation with paternal cells. Lancet 1985; i: 941–43.CrossRefGoogle Scholar
204 Stray-Pedersen, B, Stray-Pedersen, S. Etiologic factors and subsequent reproductive performance in 195 couples with a prior history of habitual abortion. Am J Obstet Gynecol 1984; 148: 140–46.CrossRefGoogle ScholarPubMed
205 Torry, DS, McIntyre, JA, McConnachie, PR. Characterization of immunoglobulin class and subclass responses in secondary aborter sera. J Reprod Immunol 1987; 10: 3342.CrossRefGoogle ScholarPubMed
206 McIntyre, JA, Faulk, WP. Clinical value of research in chronic spontaneous abortion. Am J Reprod Immunol 1986; 10: 121–26.Google ScholarPubMed
207 Johnson, PM. Trophoblast membrane infusion (TMI) in the treatment of recurrent spontaneous abortion. In: Beard, RW, Sharp, F eds, Early pregnancy loss: mechanisms and treatment, London: Royal College of Obstetricians and Gynaecologists, 1987: 389–96.Google Scholar
208 Chaouat, G, Kolb, J-P, Kiger, N, Stanislawski, M, Wegmann, T. Immunologic consequences of vaccination against abortion in mice. J Immunol 1985; 134: 1594–98.CrossRefGoogle Scholar
209 Allen, WR. Immunological aspects of the endometrial cup reaction and the effect of xenogeneic pregnancy in horses and donkeys. J Reprod Fertil 1982; 31 (Suppl): 5794.Google ScholarPubMed
210 Clark, DA. What do we know about spontaneous abortion mechanisms. Am J Reprod Immunol 1989; 19: 2837.CrossRefGoogle ScholarPubMed
211 Opelz, G, Terasaki, PI. Improvement of kidney graft survival with increased numbers of transfusions. N Engl J Med 1978; 299: 799803.CrossRefGoogle ScholarPubMed
212 Lenhard, V, Maassen, G, Seifert, P, Johannsen, R, Grosse-Wilde, H. Characterisation of transfusion-induced suppressor cells in prospective kidney allograft recipients. Transplant Proc 1982; 14: 329–32.Google ScholarPubMed
213 Woodruff, MFA, van Rood, JJ. Possible implications of the effect of blood transfusion on allograft survival. Lancet 1983; i: 12011202.CrossRefGoogle Scholar
214 Beck, I, Scott, JSA, Pepper, M, Speck, EH. The effect of neonatal exchange and later blood transfusion on lymphocyte cultures. Am J Reprod Immunol 1981; 1: 224–25.CrossRefGoogle Scholar
215 Hofmeyr, GJ, Joffe, MI, Bezwoda, WR, van Iddekinge, B. Immunological investigation of recurrent pregnancy loss and consequences of immunization with husbands' leukocytes. Fertil Steril 1987; 48: 681–84.CrossRefGoogle ScholarPubMed
216 Adinolfi, M. Recurrent habitual abortion, HLA sharing and deliberate immunization with partner's cells: a controversial topic. Hum Reprod 1986; 1: 4548.CrossRefGoogle ScholarPubMed
217 Billingham, RE, Defendi, V, Silvers, WK, Steinmuller, D. Quantitative studies on the induction of tolerance of skin homografts and on runt disease in neonatal rats. J Natl Cancer Inst 1962; 28: 365435.Google ScholarPubMed
218 Beer, AE, Billingham, RE. Procurement of runt disease of maternal origin. Transplant Proc 1973; 5: 887–91.Google ScholarPubMed
219 Palm, J. Maternal-fetal histocompatibility in rats: an escape from adversity. Cancer Res 1974; 34: 2061–65.Google ScholarPubMed
220 Hings, IM, Billingham, LR. Parity-induced changes in the frequency of RT1 heterozygotes in an R2 backcross. Transplant Proc 1983; 15: 900902.Google Scholar
221 Hurtenbach, U, Sachs, DH, Shearer, GM. Protection against graft vs host-associated immunosuppression in F1 mice. J Exp Med 1981; 154: 1922–34.CrossRefGoogle ScholarPubMed
222 Parkman, R, Mosier, D, Umansky, I, Cochrane, W, Carpenter, CB, Rosen, FS. Graft-versus-host-disease after intrauterine and exchange transfusion for hemolytic disease of the newborn. N Engl J Med 1974; 290: 359–63.CrossRefGoogle ScholarPubMed
223 Kadowaki, J, Thompson, RI, Zuelzer, WW, Woolley, PV, Brough, AJ, Gruber, D. XX/XY lymphoid chimaerism in congenital immunological deficiency syndrome with thymic alymphoplasia. Lancet 1965; ii: 1152–56.CrossRefGoogle Scholar
224 Grogan, TM, Broughton, DD, Doyle, WF. Graft-versus-host reaction (GVHR). A case report suggesting GVHR occurred as a result of maternofetal cell transfer. Arch Pathol 1975; 99: 330–34.Google ScholarPubMed
225 Pollack, MS, Kapoor, N, Sorell, M et al. DR-positive maternal engrafted T cells in a severe combined immunodeficiency patient without graft-versus-host-disease. Transplantation 1980; 30: 331–34.CrossRefGoogle Scholar
226 Seemayer, TA, Bolande, KP, Lapp, WS. Graft vs. host disease and severe combined immunodeficiency. N Engl J Med 1983; 308: 160.Google ScholarPubMed
227 Hansen, JA, Good, RA, Dupont, B. HLA-D compatibility between parent and child. Increased occurrence in severe combined immunodeficiency and other hematopoietic diseases. Transplantation 1977; 23: 366–74.CrossRefGoogle Scholar
228 Pollack, MS, Kirkpatrick, D, Kapoor, N, Dupont, B, O'Reilly, RJ. Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Engl J Med 1982; 307: 662–66.CrossRefGoogle ScholarPubMed
229 MacSween, JM, Fernandez, LA, Eastwood, SJ, Pyesmany, AF. Restricted genetic heterogeneity in families of patients with acute lymphocytic leukemia. Tissue Antigens 1980; 16: 7072.CrossRefGoogle ScholarPubMed
230 Werner-Favre, CH, Jeannet, M. HLA compatibility in couples with children suffering from acute leukemia or aplastic anemia. Tissue Antigens 1979; 13: 307309.CrossRefGoogle ScholarPubMed
231 Nymand, G. Complement-fixing and lymphocytotoxic antibodies in serum of pregnant women at delivery. Clinical observations 1. Vox Sang 1975; 28: 101109.Google Scholar
232 Harris, RE, Lordon, RE. The association of maternal lymphocytotoxic antibodies with obstetric complications. Obstet Gynecol 1976; 48: 302304.Google ScholarPubMed
233 Balasch, J, Ercilla, G, Vanrell, JA, Vives, J, Gonzalez-Merlo, J. Effects of HLA antibodies on pregnancy. Obstet Gynecol 1981; 57: 444–46.Google ScholarPubMed
234 Carandina, G, Deritis, L, Moretto, E, Palazzi, P, Randazzo, F. Maternal lymphocytotoxic antibodies and neonatal hyperbilirubinaemia. Lancet 1975; ii: 564.CrossRefGoogle Scholar
235 Koskimies, S, Pirkola, A, Julin, M. Maternal lymphocytotoxic antibodies as possible cause of neonatal hyperbilirubinaemia. Lancet 1980; i: 879–80.CrossRefGoogle Scholar
236 Sharon, R, Amar, R. Maternal anti-HLA antibodies and neonatal thrombocytopenia. Lancet 1981; i: 1313.CrossRefGoogle Scholar
237 Rote, NS. Pathophysiology of Rh isoimmunisation. Clin Obstet Gynecol 1982; 25: 243–53.CrossRefGoogle Scholar
238 Pollack, W. Recent understanding for the mechanism by which passively administered Rh antibody suppresses the immune response to Rh antigen in unimmunised Rh-negative women. Clin Obstet Gynecol 1982; 25: 255–65.CrossRefGoogle Scholar
239 Beal, RW. Non-rhesus (D) blood group isoimmunisation in obstetrics. Clin Obstet Gynecol 1979; 6: 493508.Google ScholarPubMed
240 Von dem Borne, AE, Van Leeuwen, EF, Von Riesz, LE, Van Boxtel, CJ, Engelfriet, CP. Neonatal alloimmune thrombocytopenia: detection and characterisation of the responsible antibodies. Blood 1981; 57: 649–56.CrossRefGoogle ScholarPubMed
241 Bastian, JF, Williams, RA, Ornelas, W, Tani, P, Thompson, LF. Maternal isoimmunisation resulting in combined immunodeficiency and fatal graft-versus-host disease in an infant. Lancet 1984; i: 1435–37.CrossRefGoogle Scholar