Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The complex metabolism of trimethylamine in humans: endogenous and exogenous sources–CORRIGENDUM
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The complex metabolism of trimethylamine in humans: endogenous and exogenous sources–CORRIGENDUM
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The complex metabolism of trimethylamine in humans: endogenous and exogenous sources–CORRIGENDUM
        Available formats
        ×
Export citation

In the above mentioned article, the authors apologise for the following errors:

On page 2, under the heading ‘TMA synthesis and metabolism’ the sentence:

Alternatively, TMA can be degraded to dimethylamine (DMA) and formaldehyde by the microbial enzyme tri-methylamine dehydrogenase (TMADH) (Refs 37, 38, 39). Similarly, TMAO can be acted upon by TMAO demethylase (TMADM) to form methane and ammonia by some methanogens (Ref. 40) (Fig. 2).

Should read:

Alternatively, TMA can be degraded to methane and ammonia by the microbial enzyme tri-methylamine dehydrogenase (TMADH) (Refs 37, 38, 39). Similarly, TMAO can be acted upon by TMAO demethylase (TDM) to form DMA and formaldehyde by some methanogens (Ref. 40) (Fig. 2).

Figure 2 and its caption is incorrect. The figure and caption should read as follows:

Figure 2. TMA precursors and synthesis in the human digestive tract. (a) Chemical formulae of TMA, its precursors trimethylamine-N-oxide, choline, phosphatidylcholine, carnitine, betaine, and its degradation products DMA and methylamine. (b) Schematic representation of the origin and fate of human gut TMA, which is synthesised using dietary precursors such as choline, carnitine by gut microbial enzymes. Choline TMA lyase acts upon choline leading to the synthesis of TMA (Ref. 116). TMA is then oxidised to TMAO by either mammalian hepatic FMO3 or by the action of microbial TMM (Ref. 33). TMAO can further be degraded to DMA and formaldehyde by the action of TDM (Ref. 40), whereas TMA is metabolised to methane and ammonia by the action of TMADH (Ref. 39).

Also, figure 5 is incorrect and should read:

Figure 5.

Reference

Chhibber-Goel, J. et al. (2016) The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert Reviews in Molecular Medicine 18. doi:10.1017/erm.2016.6.