Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T08:22:54.626Z Has data issue: false hasContentIssue false

CD1d-restricted glycolipid antigens: presentation principles, recognition logic and functional consequences

Published online by Cambridge University Press:  07 July 2008

William C. Florence
Affiliation:
Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Rakesh K. Bhat
Affiliation:
Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Sebastian Joyce*
Affiliation:
Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
*
*Corresponding author: Sebastian Joyce, Department of Microbiology and Immunology, A4223 Medical Centre North, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA. Tel: +1 615 322 1472; Fax: 615-343-7392; E-mail: sebastian.joyce@vanderbilt.edu

Abstract

Invariant natural killer T (iNKT) cells are innate lymphocytes whose functions are regulated by self and foreign glycolipid antigens presented by the antigen-presenting molecule CD1d. Activation of iNKT cells in vivo results in rapid release of copious amounts of effector cytokines and chemokines with which they regulate innate and adaptive immune responses to pathogens, certain types of cancers and self-antigens. The nature of CD1d-restricted antigens, the manner in which they are recognised and the unique effector functions of iNKT cells suggest an innate immunoregulatory role for this subset of T cells. Their ability to respond fast and our ability to steer iNKT cell cytokine response to altered lipid antigens make them an important target for vaccine design and immunotherapies against autoimmune diseases. This review summarises our current understanding of CD1d-restricted antigen presentation, the recognition of such antigens by an invariant T-cell receptor on iNKT cells, and the functional consequences of these interactions.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Bradstock, K.F. et al. (1980) Subpopulations of normal and leukemic human thymocytes: an analysis with the use of monoclonal antibodies. J Natl Cancer Inst 65, 33-42Google ScholarPubMed
2McMichael, A.J. et al. (1979) A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol 9, 205-210CrossRefGoogle ScholarPubMed
3Martin, L.H. et al. (1987) Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c. Proc Natl Acad Sci U S A 84, 9189-9193CrossRefGoogle ScholarPubMed
4Martin, L.H., Calabi, F. and Milstein, C. (1986) Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A 83, 9154-9158CrossRefGoogle Scholar
5Porcelli, S. et al. (1989) Recognition of cluster of differentiation 1 antigens by human CD4CD8 cytolytic T lymphocytes. Nature 341, 447-450CrossRefGoogle ScholarPubMed
6Porcelli, S., Morita, C.T. and Brenner, M.B. (1992) CD1b restricts the response of human CD48 T lymphocytes to a microbial antigen. Nature 360, 593-597CrossRefGoogle ScholarPubMed
7Beckman, E.M. et al. (1994) Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691-694CrossRefGoogle Scholar
8Sieling, P.A. et al. (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227-230CrossRefGoogle ScholarPubMed
9Moody, D.B. et al. (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884-888CrossRefGoogle ScholarPubMed
10Moody, D.B. et al. (2004) T cell activation by lipopeptide antigens. Science 303, 527-531CrossRefGoogle ScholarPubMed
11Bendelac, A. et al. (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863-865CrossRefGoogle ScholarPubMed
12Dellabona, P. et al. (1994) An invariant Vα24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J Exp Med 180, 1171-1176CrossRefGoogle Scholar
13Porcelli, S. et al. (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J Exp Med 178, 1-16CrossRefGoogle Scholar
14Exley, M. et al. (1997) Requirements for CD1d recognition by human invariant Vα24+ CD4CD8 T cells. J Exp Med 186, 109-120CrossRefGoogle ScholarPubMed
15Cui, J. et al. (1997) Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623-1626CrossRefGoogle ScholarPubMed
16Kawano, T. et al. (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626-1629CrossRefGoogle ScholarPubMed
17Burdin, N. et al. (1998) Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J Immunol 161, 3271-3281CrossRefGoogle Scholar
18Brossay, L. et al. (1998) CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188, 1521-1528CrossRefGoogle ScholarPubMed
19Motsinger, A. et al. (2002) CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med 195, 869-879CrossRefGoogle ScholarPubMed
20Motsinger, A. et al. (2003) Identification and simian immunodeficiency virus infection of CD1d-restricted macaque natural killer T cells. J Virol 77, 8153-8158CrossRefGoogle ScholarPubMed
21Marks-Konczalik, J. et al. (2000) IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97, 11445-11450CrossRefGoogle ScholarPubMed
22Lantz, O. and Bendelac, A. (1994) An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J Exp Med 180, 1097-1106CrossRefGoogle ScholarPubMed
23Bendelac, A., Savage, P.B. and Teyton, L. (2007) The biology of NKT cells. Annu Rev Immunol 25, 297-336CrossRefGoogle ScholarPubMed
24Brigl, M. and Brenner, M.B. (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22, 817-890CrossRefGoogle ScholarPubMed
25Trinchieri, G. and Sher, A. (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7, 179-190CrossRefGoogle ScholarPubMed
26Villadangos, J.A. and Schnorrer, P. (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7, 543-555CrossRefGoogle ScholarPubMed
27Porcelli, S.A. (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol 59, 1-98CrossRefGoogle Scholar
28Van Kaer, L. (2005) α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5, 31-42CrossRefGoogle ScholarPubMed
29Spada, F.M., Koezuka, Y. and Porcelli, S.A. (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 188, 1529-1534CrossRefGoogle ScholarPubMed
30Kinjo, Y. et al. (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520-525CrossRefGoogle ScholarPubMed
31Mattner, J. et al. (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525-529CrossRefGoogle ScholarPubMed
32Sriram, V. et al. (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35, 1692-1701CrossRefGoogle ScholarPubMed
33Haygood, M.G. et al. (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1, 33-43Google ScholarPubMed
34Kinjo, Y. et al. (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7, 978-986CrossRefGoogle ScholarPubMed
35Fischer, K. et al. (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101, 10685-10690CrossRefGoogle ScholarPubMed
36Ben-Menachem, G. et al. (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci U S A 100, 7913-7918CrossRefGoogle ScholarPubMed
37Schroder, N.W. et al. (2003) Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278, 33645-33653CrossRefGoogle ScholarPubMed
38Brossay, L. et al. (1998) Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J Immunol 160, 3681-3688CrossRefGoogle ScholarPubMed
39Chiu, Y.H. et al. (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189, 103-110CrossRefGoogle ScholarPubMed
40Chiu, Y.H. et al. (2002) Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat Immunol 3, 55-60CrossRefGoogle Scholar
41De Silva, A.D. et al. (2002) Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J Immunol 168, 723-733CrossRefGoogle ScholarPubMed
42Stanic, A.K. et al. (2003) Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci U S A 100, 1849-1854CrossRefGoogle ScholarPubMed
43Zhou, D. et al. (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786-1789CrossRefGoogle ScholarPubMed
44Brigl, M. et al. (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4, 1230-1237CrossRefGoogle ScholarPubMed
45Speak, A.O. et al. (2007) Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci U S A 104, 5971-5976CrossRefGoogle Scholar
46Li, Y. et al. (2008) Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology 18, 158-165CrossRefGoogle ScholarPubMed
47Paget, C. et al. (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597-609CrossRefGoogle ScholarPubMed
48Wu, D.Y. et al. (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198, 173-181CrossRefGoogle ScholarPubMed
49Gumperz, J.E. et al. (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211-221CrossRefGoogle ScholarPubMed
50Rauch, J. et al. (2003) Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J Biol Chem 278, 47508-47515CrossRefGoogle ScholarPubMed
51Koch, M. et al. (2005) The crystal structure of human CD1d with and without α-galactosylceramide. Nat Immunol 6, 819-826CrossRefGoogle ScholarPubMed
52Zajonc, D.M. et al. (2005) Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 6, 810-818CrossRefGoogle ScholarPubMed
53Zajonc, D.M. et al. (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202, 1517-1526CrossRefGoogle ScholarPubMed
54Zajonc, D.M. et al. (2006) Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. J Immunol 177, 4577-4583CrossRefGoogle ScholarPubMed
55Giabbai, B. et al. (2005) Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J Immunol 175, 977-984CrossRefGoogle Scholar
56Wu, D. et al. (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103, 3972-3977CrossRefGoogle ScholarPubMed
57Zajonc, D.M. et al. (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377, 1104-1116CrossRefGoogle Scholar
58Amano, M. et al. (1998) CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: β2-microglobulin-dependent and independent forms. J Immunol 161, 1710-1717CrossRefGoogle Scholar
59Bradbury, A. et al. (1988) Mouse CD1 is distinct from and co-exists with TL in the same thymus. EMBO J 7, 3081-3086CrossRefGoogle ScholarPubMed
60Brossay, L. et al. (1997) Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 159, 1216-1224CrossRefGoogle ScholarPubMed
61Mandal, M. et al. (1998) Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol Immunol 35, 525-536CrossRefGoogle ScholarPubMed
62Roark, J.H. et al. (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160, 3121-3127CrossRefGoogle ScholarPubMed
63Dougan, S.K., Kaser, A. and Blumberg, R.S. (2007) CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 314, 113-141Google ScholarPubMed
64Kang, S.J. and Cresswell, P. (2002) Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J Biol Chem 277, 44838-44844CrossRefGoogle ScholarPubMed
65Zeng, Z. et al. (1997) Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339-345CrossRefGoogle ScholarPubMed
66Park, J.J. et al. (2004) Lipid-protein interactions: biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proc Natl Acad Sci U S A 101, 1022-1026CrossRefGoogle ScholarPubMed
67Brozovic, S. et al. (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10, 535-539CrossRefGoogle ScholarPubMed
68Dougan, S.K. et al. (2007) MTP regulated by an alternate promoter is essential for NKT cell development. J Exp Med 204, 533-545CrossRefGoogle ScholarPubMed
69Dougan, S.K. et al. (2005) Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med 202, 529-539CrossRefGoogle ScholarPubMed
70Jayawardena-Wolf, J. et al. (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, 897-908CrossRefGoogle ScholarPubMed
71Zhou, D. et al. (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523-527CrossRefGoogle ScholarPubMed
72Kang, S.J. and Cresswell, P. (2004) Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5, 175-181CrossRefGoogle ScholarPubMed
73Yuan, W. et al. (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci U S A 104, 5551-5556CrossRefGoogle ScholarPubMed
74Schrantz, N. et al. (2007) The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. J Exp Med 204, 841-852CrossRefGoogle Scholar
75Honey, K. et al. (2002) Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 3, 1069-1074CrossRefGoogle ScholarPubMed
76Riese, R.J. et al. (2001) Regulation of CD1 function and NK1.1+ T cell selection and maturation by cathepsin S. Immunity 15, 909-919CrossRefGoogle ScholarPubMed
77Sagiv, Y. et al. (2007) A distal effect of microsomal triglyceride transfer protein deficiency on the lysosomal recycling of CD1d. J Exp Med 204, 921-928CrossRefGoogle ScholarPubMed
78Gadola, S.D. et al. (2006) Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203, 2293-2303CrossRefGoogle ScholarPubMed
79van den Elzen, P. et al. (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906-910CrossRefGoogle ScholarPubMed
80Van Kaer, L. and Joyce, S. (2006) Viral evasion of antigen presentation: not just for peptides anymore. Nat Immunol 7, 795-797CrossRefGoogle Scholar
81Sanchez, D.J., Gumperz, J.E. and Ganem, D. (2005) Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 115, 1369-1378CrossRefGoogle ScholarPubMed
82Chen, N. et al. (2006) HIV-1 down-regulates the expression of CD1d via Nef. Eur J Immunol 36, 278-286CrossRefGoogle ScholarPubMed
83Cho, S. et al. (2005) Impaired cell surface expression of human CD1d by the formation of an HIV-1 Nef/CD1d complex. Virology 337, 242-252CrossRefGoogle ScholarPubMed
84Yuan, W., Dasgupta, A. and Cresswell, P. (2006) Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat Immunol 7, 835-842CrossRefGoogle ScholarPubMed
85Renukaradhya, G.J. et al. (2005) Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. J Immunol 175, 4301-4308CrossRefGoogle ScholarPubMed
86Roura-Mir, C. et al. (2005) Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol 175, 1758-1766CrossRefGoogle ScholarPubMed
87Gui, M. et al. (2001) TCRβ chain influences but does not solely control autoreactivity of Vα14Jα281 T cells. J Immunol 167, 6239-6246CrossRefGoogle ScholarPubMed
88Scott-Browne, J.P. et al. (2007) Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8, 1105-1113CrossRefGoogle ScholarPubMed
89Wang, J. et al. (1998) Atomic structure of an αβ T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. EMBO J 17, 10-26CrossRefGoogle ScholarPubMed
90Ghendler, Y. et al. (1998) One of the CD3ɛ subunits within a T cell receptor complex lies in close proximity to the Cβ FG loop. J Exp Med 187, 1529-1536CrossRefGoogle Scholar
91Degermann, S., Sollami, G. and Karjalainen, K. (1999) T cell receptor β chain lacking the large solvent-exposed Cβ FG loop supports normal α/β T cell development and function in transgenic mice. J Exp Med 189, 1679-1684CrossRefGoogle ScholarPubMed
92Sasada, T. et al. (2002) Involvement of the TCR Cβ FG loop in thymic selection and T cell function. J Exp Med 195, 1419-1431CrossRefGoogle ScholarPubMed
93Degermann, S., Sollami, G. and Karjalainen, K. (1999) Impaired NK1.1 T cell development in mice transgenic for a T cell receptor β chain lacking the large, solvent-exposed cβ FG loop. J Exp Med 190, 1357-1362CrossRefGoogle Scholar
94Stanic, A.K. et al. (2003) Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T (iNKT) cell receptor. J Immunol 171, 4539-4551CrossRefGoogle ScholarPubMed
95Cantu, C. 3rd et al. (2003) The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβTCRs. J Immunol 170, 4673-4682CrossRefGoogle Scholar
96Wedemayer, G.J. et al. (1997) Structural insights into the evolution of an antibody combining site. Science 276, 1665-1669CrossRefGoogle ScholarPubMed
97Wu, L.C. et al. (2002) Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552-556CrossRefGoogle ScholarPubMed
98Feng, D. et al. (2007) Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’. Nat Immunol 8, 975-983CrossRefGoogle ScholarPubMed
99Borg, N.A. et al. (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44-49CrossRefGoogle ScholarPubMed
100Sidobre, S. et al. (2002) The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 169, 1340-1348CrossRefGoogle Scholar
101McCarthy, C. et al. (2007) The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 204, 1131-1144CrossRefGoogle ScholarPubMed
102Grant, E.P. et al. (1999) Molecular recognition of lipid antigens by T cell receptors. J Exp Med 189, 195-205CrossRefGoogle ScholarPubMed
103Melian, A. et al. (2000) Molecular recognition of human CD1b antigen complexes: Evidence for a common pattern of interaction with αβ TCRs. J Immunol 165, 4494-4504CrossRefGoogle Scholar
104Cantu, C. 3rd et al. (2003) The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβTCRs. J Immunol 170, 4673-4682CrossRefGoogle Scholar
105Gadola, S.D. et al. (2006) Structure and binding kinetics of three different human CD1d-α-galactosylceramide-specific T cell receptors. J Exp Med 203, 699-710CrossRefGoogle ScholarPubMed
106Kjer-Nielsen, L. et al. (2006) A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J Exp Med 203, 661-673CrossRefGoogle ScholarPubMed
107Miyamoto, K., Miyake, S. and Yamamura, T. (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th2 bias of natural killer T cells. Nature 413, 531-534CrossRefGoogle ScholarPubMed
108Yu, K.O. et al. (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc Natl Acad Sci U S A 102, 3383-3388CrossRefGoogle ScholarPubMed
109Germain, R.N. (2001) The art of the probable: system control in the adaptive immune system. Science 293, 240-245CrossRefGoogle ScholarPubMed
110Godfrey, D.I. and Berzins, S.P. (2007) Control points in NKT-cell development. Nat Rev Immunol 7, 505-518CrossRefGoogle ScholarPubMed
111MacDonald, H.R. and Mycko, M.P. (2007) Development and selection of Vαl4i NKT cells. Curr Top Microbiol Immunol 314, 195-212Google ScholarPubMed
112Ohteki, T. and MacDonald, H.R. (1994) Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β cells in the liver of mice. J Exp Med 180, 699-704CrossRefGoogle Scholar
113Stetson, D.B. et al. (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198, 1069-1076CrossRefGoogle Scholar
114Matsuzaki, G. et al. (1995) Early appearance of T cell receptor αβ+ CD4 CD8 T cells with a skewed variable region repertoire after infection with Listeria monocytogenes. Eur J Immunol 25, 1985-1991CrossRefGoogle Scholar
115Naiki, Y. et al. (1999) Regulatory role of peritoneal NK1.1+ αβ T cells in IL-12 production during Salmonella infection. J Immunol 163, 2057-2063CrossRefGoogle Scholar
116Lee, P.T. et al. (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110, 793-800CrossRefGoogle ScholarPubMed
117Wilson, M.T. et al. (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci U S A 100, 10913-10918CrossRefGoogle ScholarPubMed
118Crowe, N.Y. et al. (2003) Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 171, 4020-4027CrossRefGoogle ScholarPubMed
119Harada, M. et al. (2004) Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int Immunol 16, 241-247CrossRefGoogle ScholarPubMed
120Parekh, V.V. et al. (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115, 2572-2583CrossRefGoogle ScholarPubMed
121Bezbradica, J.S. et al. (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural (iNKT) cell activation in vivo. J Immunol 174, 4696-4705CrossRefGoogle Scholar
122Hayakawa, Y. et al. (2004) Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nat Immunol 5, 590-596CrossRefGoogle ScholarPubMed
123Fujii, S. et al. (2002) Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol 3, 867-874CrossRefGoogle ScholarPubMed
124Fujii, S. et al. (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198, 267-279CrossRefGoogle ScholarPubMed
125Vincent, M.S. et al. (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3, 1163-1168CrossRefGoogle ScholarPubMed
126Carnaud, C. et al. (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163, 4647-4650CrossRefGoogle ScholarPubMed
127Naumov, Y.N. et al. (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci U S A 98, 13838-13843CrossRefGoogle ScholarPubMed
128Nakagawa, R. et al. (2000) Antitumor activity of α-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells. Oncol Res 12, 51-58CrossRefGoogle ScholarPubMed
129Fujii, S. et al. (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199, 1607-1618CrossRefGoogle ScholarPubMed
130Diao, H. et al. (2004) Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21, 539-550CrossRefGoogle Scholar
131Hermans, I.F. et al. (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171, 5140-5147CrossRefGoogle ScholarPubMed
132Singh, N. et al. (1999) Cutting edge: Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 163, 2373-2377CrossRefGoogle Scholar
133Forestier, C. et al. (2007) Improved outcomes in NOD mice treated with a novel Th2 cytokine-biasing NKT cell activator. J Immunol 178, 1415-1425CrossRefGoogle ScholarPubMed
134Ndonye, R.M. et al. (2005) Synthesis and evaluation of sphinganine analogues of KRN7000 and OCH. J Org Chem 70, 10260-10270CrossRefGoogle ScholarPubMed
135Lee, P.T. et al. (2002) Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 195, 637-641CrossRefGoogle Scholar
136Gumperz, J.E. et al. (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195, 625-636CrossRefGoogle ScholarPubMed
137Crowe, N.Y. et al. (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202, 1279-1288CrossRefGoogle ScholarPubMed
138Long, X. et al. (2007) Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids. Nat Chem Biol 3, 559-564CrossRefGoogle ScholarPubMed
139Salio, M. et al. (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci U S A 104, 20490-20495CrossRefGoogle ScholarPubMed
140Park, S.-H., Roark, J.H. and Bendelac, A. (1998) Tissue-specific recognition of mouse CD1 molecules. J Immunol 160, 3128-3134CrossRefGoogle ScholarPubMed
141De Libero, G. et al. (2005) Bacterial infections promote T cell recognition of self-lipids. Immunity 22, 763-772CrossRefGoogle Scholar
142Nunnari, J. and Walter, P. (1996) Regulation of organelle biogenesis. Cell 84, 389-394CrossRefGoogle ScholarPubMed
143Cox, J.S., Chapman, R.E. and Walter, P. (1997) The unfolded protein response coordinates the production of ER protein and ER membrane. Mol Biol Cell 8, 1905-1914CrossRefGoogle Scholar
144Chapman, R., Sidrauski, C. and Walter, P. (1998) Intracellular signalling from the endoplasmic reticulum to the nucleus. Annu Rev Cell Biol. 14, 459-485CrossRefGoogle ScholarPubMed
145Brewer, J.W. and Hendershot, L.M. (2005) Building an antibody factory: a job for the unfolded protein response. Nature Immunol 6, 23-29CrossRefGoogle ScholarPubMed
146Bendelac, A. (1995) Mouse NK1+ T cells. Curr Opin Immunol 7, 367-374CrossRefGoogle ScholarPubMed
147Janeway, C.A. et al. (2001) Immunobiology: the Immune System in Health and Disease (5th edn), Garland Science, New YorkGoogle Scholar
148Joyce, S. (2001) CD1d and natural T cells: how their properties jump-start the immune system. Cell Mol Life Sci 58, 442-469CrossRefGoogle ScholarPubMed
149Wilson, S.B. and Byrne, M.C. (2001) Gene expression in NKT cells: defining a functionally distinct CD1d-restricted T cell subset. Curr Opin Immunol 13, 555-561CrossRefGoogle ScholarPubMed
150Wilson, S.B. et al. (2000) Multiple differences in gene expression in regulatory Vα24JαQ T cells from identical twins discordant for type I diabetes. Proc Natl Acad Sci U S A 97, 7411-7416CrossRefGoogle ScholarPubMed
151Yu, K.O. et al. (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc Natl Acad Sci U S A 102, 3383-3388CrossRefGoogle ScholarPubMed
152Liu, N. et al. (2004) Myeloid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi-infected mice. Infect Immun 72, 3195-3203CrossRefGoogle Scholar

Further reading, resources and contacts

Porcelli, S.A. (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol 59, 1-98CrossRefGoogle Scholar
Brigl, M. and Brenner, M.B. (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22, 817-890CrossRefGoogle ScholarPubMed
Van Kaer, L. (2005) α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5, 31-42CrossRefGoogle ScholarPubMed
Moody, D.B., Zajonc, D.M. and Wilson, I.A. (2005) Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol 5, 387-399CrossRefGoogle ScholarPubMed
Bendelac, A., Savage, P.B. and Teyton, L. (2007) The biology of NKT cells. Annu Rev Immunol 25, 297-336CrossRefGoogle ScholarPubMed
Barral, D.C. and Brenner, M.B. (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7, 929-941CrossRefGoogle ScholarPubMed