Skip to main content Accessibility help
×
Home

THE RESPONSE OF SUGARCANE TO TRASH RETENTION AND NITROGEN IN THE BRAZILIAN COASTAL TABLELANDS: A SIMULATION STUDY

  • ANA PAULA PESSIM DE OLIVEIRA (a1), PETER J. THORBURN (a2), JODY S. BIGGS (a2), EDUARDO LIMA (a3), LÚCIA HELENA CUNHA DOS ANJOS (a3), MARCOS GERVASIO PEREIRA (a3) and NELSON ÉLIO ZANOTTI (a4)...

Summary

To evaluate the impact of trash management on sugarcane production and N fertiliser requirements in environmental conditions of Brazilian coastal tablelands, a simulation was conducted with APSIM-Sugar cropping systems model. The model was parameterised for, and validated against results from a long term (over 23 years) experiment comparing the system-burnt trash and green cane trash blanketing (GCTB), in Linhares-ES. Simulations were conducted over two crop cycles (14 years) with different management (100%, 75%, 50%, 25% GCTB and burnt trash), and N fertiliser rates from 0 to 240 kg ha−1 (in 40 kg ha−1 increments) on the ratoon crops, and 75% of these rates on the plant crops. Measured cane yields and soil carbon were simulated well by the model. The RMSE (root mean square error) of predictions in burnt and GCTB treatments were 14.02 Mg ha−1 and 13.45 Mg ha−1 for yield, and 0.09 and 0.13% for soil carbon. In the simulation, the cane yield responded positively to the GCTB systems. Optimum N rates were higher in the 100%, 75% and 50% GCTB than with burnt trash and 25% GCTB reflecting the greater yields under GCTB systems. The response to trash retention was dependent on N fertiliser, and it was smaller or even negative at lower N rates. With adequate N, the positive responses were predicted to occur in all crops after the imposition of GCTB system. The removal of any proportion of the trash reduced the potential sugarcane yield. The simulations showed that average environmental losses of N are likely to be greater from trash-retained systems at all N fertiliser rates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      THE RESPONSE OF SUGARCANE TO TRASH RETENTION AND NITROGEN IN THE BRAZILIAN COASTAL TABLELANDS: A SIMULATION STUDY
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      THE RESPONSE OF SUGARCANE TO TRASH RETENTION AND NITROGEN IN THE BRAZILIAN COASTAL TABLELANDS: A SIMULATION STUDY
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      THE RESPONSE OF SUGARCANE TO TRASH RETENTION AND NITROGEN IN THE BRAZILIAN COASTAL TABLELANDS: A SIMULATION STUDY
      Available formats
      ×

Copyright

Corresponding author

††Corresponding author. Email: ppessim@yahoo.com.br

References

Hide All
Ball-Coelho, B., Tiessen, H., Stewart, J. W. B., Salcedo, I. H. and Sampaio, E. V. S. B. (1993). Residue management effects on sugarcane yield and soil properties in northeastern Brazil. Agronomy Journal 85:10041008.
Basanta, M. V., Dourado Neto, D., Reichardt, K., Bacchi, O. O. S., Oliveira, J. C. M., Trivelin, P. C. O., Timm, L. C., Tominaga, T. T., Correchel, V., Cassaro, F. A. M., Pires, L. F. and Macedo, J. R. (2003). Management effects on nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116:235248.
Benazzi, E. S., Bianchi, M. O., Correia, M. E. F., Lima, E and Zonta, E. (2013). Impacts of harvesting methods of sugar cane on the soil macrofauna in production area in Espírito Santo, Brazil. Semina 34:34253442.
Campos, L. H. F., Carvalho, S. J. P., Christoffoleti, P. J., Fortes, C. and Silva, J. S. (2010). Sistemas de manejo da palhada influenciam acúmulo de biomassa e produtividade da cana-de-açúcar (RB855453). Acta Scientiarum Agronomy 32:345350.
Ceddia, M. B., Anjos, L. H. C., Lima, E., Silva, L. A. and Ravelli Neto, A. (1999). Sugar cane harvesting systems and changes on physical properties of a yellow podzolic soil in Espírito Santo, Brazil. Pesquisa Agropecuária Brasileira 34 (8):14671473.
CONAB (2014). Monitoring of the Brazilian harvest: sugarcane, fourth survey, April 2014–National company of supply. Brasilia 2014.
Costa, L. G., Marin, F. R., Nassif, D. S. P., Pinto, H. M. S. and Lopes-Assad, M. L. R. C. (2014). Simulating trash and nitrogen management effects on sugar cane yield. Revista Brasileira de Engenharia Agrícola e Ambiental 18:469474.
Digonzelli, P. A., Romero, E. R., Alonso, L., Ullivarri, J. F., Quinteros, H. R., Scandaliaris, J. and Fajre, S. (2011). Assessing a sustainable sugarcane production system in Tucumán, Argentina. Part 1: dynamics of sugarcane harvest residue (trash) decomposition. Revista Industrial y Agrícola de Tucumán 88:0112.
Fernandes, F. C. S., Libardi, P. L. and Carvalho, L. A. (2006). Internal drainage and nitrate leaching in a corn-black oat-corn succession with two split nitrogen applications. Scientia Agricola 63:483492.
Fortes, C., Trivelin, P. C. O., Ferreira, D. A., Vitti, A. C., Franco, H. C. J. and Otto, R. (2011). Recovery of nitrogen (15N) by sugarcane from previous crop residues and urea fertilisation under a minimum tillage system. Sugar Technology 13:4246.
Galdos, M. V., Cerri, C. C. and Cerri, C. E. P. (2009). Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347352.
Ghiberto, P. J., Libardi, P. L., Brito, A. S. and Trivelin, P. C. O. (2009). Leaching of nutrients from a sugarcane crop growing on an Ultisol in Brazil. Agricultural Water Management 96:14431448.
Ghiberto, P. J., Libardi, P. L., Brito, A. S. and Trivelin, P. C. O. (2011). Nitrogen fertilizer leaching in an Oxisol cultivated with sugarcane. Scientia Agricola 68:8693.
Gomes, J. B. V., Fernandes, M. F., Barreto, A. C., Araújo Filho, J. C. and Curi, N. (2012). Soil attributes under agroecosystems and forest vegetation in the coastal tablelands of northestern Brazil. Ciência Agrotécnica 36:649664.
Graham, M. H., Haynes, R. J. and Meyer, J. H. (2002). Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. European Journal of Soil Science 53:589598.
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E., Snow, V. O., Murphy, C., Moore, A. D., Brown, H. E., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman, Z., Thorburn, P. J., Gaydon, D. S., Dalgliesh, N. P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F. Y., Wang, E., Hammer, G. L., Robertson, M. J., Dimes, J., Whitbread, A. M., Hunt, J., van Rees, H., McClelland, T., Carberry, P. S., Hargreaves, J. N. G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S. and Keating, B. A. (2014). APSIM-Evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software 62:327350.
Keating, B. A., Robertson, M. J., Muchow, R. C. and Huth, N. I. (1999). Modelling sugarcane production systems. I. Development and performance of the sugarcane module. Field Crops Research 61:253271.
Macedo, I. C., Seabra, E. A. J. and Silva, E. A. R. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582595.
Marin, F. R., Thorburn, P. J., Costa, G. and Otto, R. (2013). Simulating long-term effects of trash management on sugarcane yield for Brazilian cropping systems. Sugar Technology 16:164173.
Martinelli, L. A., Coletta, L. D., Ravagnani, E. C., Camargo, P. B., Ometto, J. P., Filoso, S. and Victoria, R. L. (2010). Dissolved nitrogen in rivers: comparing pristine and impacted regions of Brazil. Brazilian Journal of Biology 70:709722.
McIntyre, G., Seeruttun, S. and Barbe, C. (1996). Trash management in Mauritian sugarcane plantations. In Proc. XXII Congress of the Int. Soc. Sugarcane Technology 1995, 213216 (Eds Cock, J. H., Brekelbaum, T.). Cartagena, Colombia: Tecnicanã Cali.
Meier, E. A., Thorburn, P. J., Wegener, M. K. and Basford, K. E. (2006). The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of north Queensland. Nutrient Cycling in Agroecosystems 75: 101114.
Mendoza, H. N. S., Lima, E., Anjos, L. H. C., Silva, L. A., Ceddia, M. B. and Antunes, M. V. M. (2000). Chemical and biological properties of a tableland soil cultivated with sugar cane with and without straw burning. Revista Brasileira de Ciência do Solo 24:201207.
Meyer, J. H., Schumann, A. W., Wood, R. A., Nixon, D. J. and Van Den Berg, M. (2007). Recent advances to improve nitrogen use efficiency of sugarcane in the South African sugar industry. In: International Society of Sugar Cane Technologists, 238246 (Ed. Hogarth, D. M), ICC, Durban South Africa, July-August 29–02.
Nascimento, G. B., Anjos, L. H. C., Pereira, M. G., Fontana, A. and Santos, H. G. (2010). Pedotransfer functions for predicting water content in Oxisols and Ultisols from Brazil. Revista Brasileira de Ciência Agrária 5 (4):560569.
Pinheiro, E. F. M., Lima, E., Ceddia, M. B., Urquiaga, S., Alves, B. R. and Boddey, R. M. (2010). Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil 333:7180.
Prasertsak, P., Freney, J. R., Denmead, O. T., Saffigna, P. G., Prove, B. G. and Reghenzani, J. R. (2002). Effect of fertilizer placement on nitrogen loss from sugarcane in tropical Queensland. Nutrient Cycling in Agroecosystems 62:229239.
Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C. and Strong, W. M. (1998). APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agricultural Systems 56:128.
Resende, A. S., Xavier, R. P., Oliveira, O. C., Urquiaga, S., Alves, B. J. R. and Boddey, R. M. (2006). Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugarcane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil. Plant Soil 281:339351.
Ridge, D. R. and Dick, R. G. (1989). The adoption of green harvesting and trash blanketing in Australia. International Society of Sugarcane Technologists 20:10341041.
Robertson, F. A. and Thorburn, P. J. (2007a). Decomposition of sugarcane harvest residue in different climatic zones. Australian Journal of Soil Research 45:111.
Robertson, F. A. and Thorburn, P. J. (2007b). Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Australian Journal of Soil Research 45:1323.
Singh, G., Chapman, S. C., Jackson, P. A. and Lawn, R. J. (2002). Lodging reduces sucrose accumulation of sugarcane in the wet and dry tropics. Australian Journal Agricultural Research 53:11831195.
Tavares, O. C. H., Lima, E. and Zonta, E. (2010). Sugarcane growth and productivity under different tillage and crop systems. Acta Scientiarum Agronomy 32 (1):6168
Thorburn, P. J., Antwerpen, R., Meyer, J. H. and Bezuidenhout, C. N. (2002). The impact of trash management on soil carbon and nitrogen: I modelling long-term experimental results in the South African sugar industry. Proceedings of South African Sugar Cane Technologists Association 76:260268.
Thorburn, P. J., Biggs, J. S., Collins, K. and Probert, M. E. (2010). Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agriculture Ecosystems Environment 136:343350.
Thorburn, P. J., Biggs, J. S., Webster, A. J. and Biggs, I. M. (2011). An improved way to determine nitrogen fertiliser requirements of sugar cane crops to meet global environmental challenges. Plant and Soil 339:5167.
Thorburn, P. J., Horan, H. L. and Biggs, J. S. (2004). The impact of trash management on sugarcane production and nitrogen management: a simulation study. In Proceedings of the Australian Society of Sugar Cane Technologists Conference, 112, Brisbane, Australia, ASSCT, May 47.
Thorburn, P. J., Meier, E. A., Collins, K. and Robertson, F. A. (2012). Changes in soil carbon sequestration, fractionation and soil fertility in response to sugar cane residue retention are site-specific. Soil and Tillage Research 120:99111.
Thorburn, P. J., Meier, E. A. and Probert, M. E. (2005). Modelling nitrogen dynamics in sugarcane systems: Recent advances and applications. Field Crops Research 92:337351.
Thorburn, P. J., Probert, M. E., Lisson, S., Wood, A. W. and Keating, B. A. (1999). Impacts of trash retention on soil nitrogen and water: An example from the Australian sugarcane industry. Proceedings of South African Sugar Cane Technologists Association 73:7579.
Thorburn, P. J., Probert, M. E. and Robertson, F. A. (2001a). Modelling decomposition of sugarcane surface residues with APSIM-Residue. Field Crops Research, 70:223232.
Thorburn, P. J., Van Antwerpen, R., Meyer, J. H., Keating, B. A. and Robertson, R. A. (2001b). Impact of trash blanketing on soil nitrogen fertility: Australian and South African experience. Proceedings International Society Sugar Cane Technology 24:3339.
UFRRJ (2013). Manual De Calagem E Adubação Do Estado Do Rio De Janeiro, 1st edn. Seropédica, RJ: Universidade Rural, 430 pp.
Van Antwerpen, R., Thorburn, P. J., Horan, H., Meyer, J. H. and Bezuidenhout, C. N. (2002). The impact of trash management on soil carbon and nitrogen: II implications for sugarcane production in South Africa. Proceedings of the South African Sugar Technologists Association, 76:269280.
Vitti, A. C., Trivelin, P. C. O., Gava, G. J. C., Franco, H. C. J., Bologna, I. R. and Faroni, C. E. (2007). Produtividade da cana-de-açúcar relacionada à localização de adubos nitrogenados aplicados sobre os resíduos culturais em canavial sem queima. Revista Brasileira de Ciência do Solo 31:491498.
Wood, A. W. (1991). Management of crop residues following green harvesting of sugarcane in north Queensland. Soil Tillage Research 20:6985.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed