Skip to main content Accessibility help

Observations of Some Tree Root Systems in Agroforestry Intercrop Situations, and their Graphical Representation

  • M. R. Rao (a1), P. Muraya (a1) and P. A. Huxley (a1)


Root systems of unpruned Cassia siamea and Leucaena leucocephala trees and regularly pruned hedges of C. siamea, L. leucocephala and Gliricidia sepium were examined in a semi-arid area in Kenya. Trenches were dug across rows of trees or hedges, soil profiles washed, and different sized roots counted in small 5 × 5 cm grids fully covering both faces of the trench. The roots were displayed using two computer software programmes written for this purpose: a spline technique that displays smoothed root densities in different shades; and a random dot method which displays roots as dots, using any specified scale. The fine roots of four-and-a-half-year-old C. siamea penetrated the soil to meet with rocks at depths between 0.60 and 2.0 m, and spread laterally to 9 m, traversing adjacent crop plots. Roots of eight-year-old L. leucocephala covered an extensive soil volume and included a greater density of fine roots than C. siamea at comparable distances. Above-ground pruning restricted the roots of hedges to a depth of 1.5 m, although roots of different hedges spaced 5 m apart intermingled freely in the alley space. L. leucocephala roots filled the alley very densely while those of G. sepium were sparse, particularly in the middle of the alley. Rooting density of C. siamea was intermediate. The dot method is more precise when rooting densities are low but when densities are high the splining method appears to be more visually helpful. These graphical methods greatly facilitate overall comparisons of sections of tree root systems, but quantification of root densities at different distances away from trees is still needed to understand more precisely the competitive effects of trees and associated crops.

Systemas de raices de los árboles



Hide All
Atkinson, D. (1980). The distribution and effectiveness of the roots of tree crops. Horticulture Review 2:424490.
Bohm, W. (1979). Methods of Studying Root Systems. Berlin: Springer-Verlag.
Bowen, G. D. (1985). Roots as a component of tree productivity. In Attributes of Trees as Crop Plants, 303315 (Eds Cannel, M. G. R. and Jackson, J. E.). Abbots Ripton: Institute of Terrestrial Ecology.
Cassidy, D. S. M. & Kumar, D. (1984). Root distribution of Coffea arabica L. in Zimbabwe. 1. The effect of plant density, mulch cover planting and shade in Chipinge. Zimbabwe journal of Agricultural Research 22:119132.
Foley, J. D. & Van Dam, A. (1982). Fundamentals of Interactive Computer Graphics. Reading: Addison-Wesley.
Gillespie, A. R. (1989). Modelling nutrient flux and interspecies root competition in agroforestry interplanting. Agroforestry Systems 8:257266.
Gregory, P. J. & Reddy, M. S. (1982). Root growth in an intercrop of pearl millet/groundnut. Field Crops Research 5:241252.
Huxley, P. A. (in press). Multipurpose trees: biological and ecological aspects relevant to their selection and use. In Tree Crop Ecosystems, (Ed. by Last, F.). Amsterdam: Elsevier.
Huxley, P. A., Darnhofer, T., Pinney, A., Akunda, E. & Gatama, D. (1989). The tree/crop interface: A project designed to generate experimental methodology. Agroforestry Abstracts 2:127145.
Johnsson, K., Fidjeland, L., Maghembe, J. & Hogberg, P. (1988). The vertical distribution offine roots of five tree species and maize in Morogoro, Tanzania. Agroforestry Systems 6:6369.
Kerfoot, O. (1963). The root systems of tropical forest trees. Commonwealth Forestry Review 42:1926.
Kushwah, B. L., Nelliat, E. V., Markose, V. T. & Sunny, A. F. (1973). Rooting pattern of coconut (Cocos nucifera L.). Indian journal of Agronomy 18:7174.
Nair, P. K. R. (1987). ICRAF Field Station at Machakos. Agroforestry Systems 5:383393.
Pinney, A., Huxley, P. A. & Akunda, E. (in preparation). Lessons for agroforestry experimentation from ICRAF's tree/crop interface project. Proceedings of a Regional Conference on Agroforestry Research and Development in the Miombo Ecozone of Southern Africa,16–22 June, 1991,Lilongwe, Malawi.(Special issue of Forest Ecology and Management).
Rao, M. R., Sharma, M. M. & Ong, C. K. (1990). A study of the potential of hedgerow intercropping in semi-arid India using a two-way systematic design. Agroforestry Systems 11:243258.
Rao, M. R. (compiler) (1990). Fact Sheets on Demonstrations and Trials at ICRAF's Field Station, Machakos, Kenya. Nairobi: ICRAF.
Roger, J. H. & Rao, M. R. (1990). Agroforestry field experiments: discovering the hard facts, Part 1. Statistical considerations. Agroforestry Today 2(1):47.
Roger, J. H. & Muraya, P. (1991). Datachain: Database for Experimental Data, Version 2, with User's Manual. Nairobi: ICRAF.
Schuurman, J. J. & Goedewaagen, M. A. J. (1971). Methods for the Examination of Root Systems and Roots (2nd edition). Wageningen: Pudoc.
Singh, R. P., Ong, C. K. & Saharan, N. 1989. Above- and below-ground interactions in alley cropping in semi-arid India. Agroforestry Systems 9:259274.
Van Noordwijk, M., Hariah, K., Syekhfam, M. S. & Flach, E. N. (1991). Peltophorum ptrlocarpus (DC.) Back (Ceasalpiniaceae), a tree with a root distribution suitable for alley cropping on acid soils in the humid tropics. In Plant Roots and their Environment, 526536 (Eds McMichael, B. L. and Persson, H.). Amsterdam: Elsevier.

Observations of Some Tree Root Systems in Agroforestry Intercrop Situations, and their Graphical Representation

  • M. R. Rao (a1), P. Muraya (a1) and P. A. Huxley (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed