Skip to main content Accessibility help




The agricultural research and development institutions in most developing countries are poorly equipped to support the needs of millions of smallholder farmers that depend upon them. The research approaches taken by these systems explicitly or implicitly seek simple, one-size-fits-all solutions for problems and opportunities that are extremely diverse. Radical change is needed to facilitate the agroecological intensification of smallholder farming. We propose that large-scale participatory approaches, combined with innovations in information and communications technology (ICT), could enable the effective matching of diverse options to the wide spectrum of socio-ecological context that characterize smallholder agriculture. We consider the requirements, precedents and issues that might be involved in the development of farmer research networks (FRNs). Substantial institutional innovation will be needed to support FRNs, with shifts in roles and relationships amongst researchers, extension providers and farmers. Where farmers’ organizations have social capital and strong facilitation skills, such alignments may be most feasible. Novel information management capabilities will be required to introduce options and principles, enable characterization of contexts, manage data related to option-by-context interactions and enable farmers to visualize their findings in useful and intelligible ways. FRNs could lead to vastly greater capacity for technical innovation, which could in turn enable greater productivity and resilience, and enhance the quality of rural life.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Corresponding author. Email:


Hide All

Contact address: School of Integrative Plant Science, Cornell University, Ithaca NY, 14853, USA.



Hide All
Aker, J. C. (2011). Dial ‘A’ for agriculture: A review of information and communication technologies for agricultural extension in developing countries. Agricultural Economics 42 (6):631647.
Annicchiarico, P. (2002). Genotype x Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. Rome: Food and Agriculture Organization of the United Nations.
Ashby, J., Braun, A., Garcia, T., Guerrero, M. P., Hernandez, L. H., Quiro´s, C.A. and Roa, J. I. (2000). Investing in Farmers as Researchers. Experience with Local Agricultural Research Committees in Latin America. Cali, Colombia: CIAT Publication no. 318, ISBN 958-694-030-6 (available in PDF format at
Bachmann, L. (2010). Farmer-led participatory plant breeding. Methods and impacts. The MASIPAG farmers Network in the Philippines. Breeding for Resilience: A Strategy for Organic and Low-Input farming systems? EUCARPIA 2nd Conference of the Organic and Low-Input Agriculture Section, Paris, France, 1–3 December, 119–122 (Eds Goldringer, I., Dawson, J. C., Rey, F., Vettoretti, A., Chable, V., Lammerts van Bueren, E., Finckh, M. and Barot, S.).
Bebber, D. P., Holmes, T., Smith, D. and Gurr, S. J. (2014). Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytologist 202 (3):901910.
Berger, J. D., Ali, M., Basu, P. S., Chaudhary, B. D., Chaturvedi, S. K., Deshmukh, P. S., Dharmaraj, P. S., Dwivedi, S. K., Gangadhar, G. C., Gaur, P. M., Kumar, J., Pannu, R. K., Siddique, K. H. M., Singh, D. N., Singh, D. P., Singh, S. J., Turner, N. C., Yadava, H. S. and Yadav, S. S. (2006). Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Research 98:230244.
Biggs, S. and Farrington, J. (1991). Agricultural Research and the Rural Poor: A Review of Social Science Analysis. Ottawa: International Development Research Centre.
Biradar, D. P., Aladakatti, Y. R., Rao, T. N. & Tiwari, K. N. (2006). Site-specific nutrient management for maximization of crop yields in Northern Karnataka. Better Crops, 90 (3):3335.
Boer, M. P., Wright, D., Feng, L., Podlich, D. W., Luo, L., Cooper, M. and van Eeuwijk, F. A. (2007). A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics, 177:18011813.
Brauer, E. K., Singh, D. K. and Popescu, S. C. (2014). Next-generation plant science: Putting big data to work. Genome Biology 15 (1):301.
Braun, A. R., Thiele, G. and Fernandez, M. (2000). Farmer Field Schools and Local Agricultural Research Committees: Complementary Platforms for Integrated Decision-Making in Sustainable Agriculture. London: Overseas Development Institute.
Brummer, E. C. (2006). Breeding for cropping systems. In Plant Breeding: The Arnel R. Hallauer International Symposium, 97–106 (Eds Lamkey, K. R. and Lee, M.). Ames, Iowa, USA: Blackwell Publishing. doi: 10.1002/9780470752708.ch6.
Bryant, R. E., Katz, R. H. and Lazowska, E. D. (2008). Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society. Computing Community Consortium white paper. Available at: Accessed July 2015.
Ceccarelli, S. and Grando, S. (2007). Decentralized-participatory plant breeding: An example of demand driven research. Euphytica 155 (3):349360.
Ceccarelli, S., Guimaraes, E. P. and Weltzien, E. (Editors) (2009). Plant Breeding and Farmer Participation, 671. Rome: FAO, ISBN 789251063828.
Chapman, S. C. (2008). Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161 (1–2):195208.
Christinck, A., Weltzien, E. and Hoffmann, V. (Editors) (2005). Setting Breeding Objectives and Developing Seed Systems with Farmers: A Handbook for Practical Use in Participatory Plant Breeding Projects. Wageningen, The Netherlands: Margraf Publishers, Weikersheim, Germany and CTA.
Crossa, J. (2012). From genotype x environment interaction to gene x environment interaction. Current Genomics 13 (3):225.
Des Marais, D. L., Hernandez, K. M. and Juenger, T. E. (2013). Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics 44 (1):529.
Douthwaite, B., Beaulieu, N., Lundy, M. and Peters, D. (2009). Understanding how participatory approaches foster innovation. International Journal of Agricultural Sustainability, 7:4260.
Douxchamps, S., Frossard, E., Uehlinger, N., Rao, I., Van Der Hoek, R., Mena, M., Schmidt, A. and Oberson, A. (2012). Identifying factors limiting legume biomass production in a heterogeneous on-farm environment. The Journal of Agricultural Science, 150 (6):675690.
Ebanyat, P., de Ridder, N., de Jager, A., Delve, R. J., Bekunda, M. A. and Giller, K. E. (2010). Impacts of heterogeneity in soil fertility on legume-finger millet productivity, farmers’ targeting and economic benefits. Nutrient Cycling in Agroecosystems 87 (2):209231.
Garrett, K. A. (2013). Agricultural impacts: Big data insights into pest spread. Nature Climate Change 3:955957.
Gebbers, R. and Adamchuk, V. I. (2010). Precision agriculture and food security. Science 327:828831.
Giller, K. E., Rowe, E. C., de Ridder, N. and van Keulen, H. (2006). Resource use dynamics and interactions in the tropics: Scaling up in space and time. Agricultural Systems 88 (1):827.
Giller, K., Tittonell, P., Rufino, M. C., van Wijk, M. T., Zingore, S., Mapfumo, P., Adjei-Nsiah, S., Herrero, M., Chikowo, R., Corbeels, M., Rowe, E. C., Baijukya, F., Mwijage, A., Smith, J., Yeboah, E., van der Burg, W. J., Sanogo, O. M., Misiko, M., de Ridder, N., Karanja, S., Kaizzi, C., K'ungu, J., Mwale, M., Nwaga, D., Pacini, C. and Vanlauwe, B. (2011). Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems 104:191203.
Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W. and Borriello, G. (2010). Open data kit: tools to build information services for developing regions. In Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development, 1–11. New York, NY: The Association for Computing Machinery.
Haussmann, B. I. G., Traoré, P. S. C., Rattunde, H. F., Weltzien-Rattunde, E., vom Brocke, K. and Parzies, H. K. (2012). Breeding strategies for adaptation of pearl millet and sorghum to climate variability in West Africa. (Review article). Journal of Agronomy and Crop Science 198:327339.
Herrmann, L., Haussmann, B. I. G., van Mourik, T., Traore, P. S., Oumarou, H. M., Traore, K., Ouedraogo, M. and Naab, J. (2013). Coping with climate variability and change in research for development targeting West Africa: Need for paradigm changes. Secheresse 24:294303.
Heslot, N., Akdemir, D., Sorrells, M. E. and Jannink, J. L. (2014). Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theoretical and Applied Genetics 127 (2):463480.
Heslot, N., Jannink, J. L. and Sorrells, M. E. (2015). Perspectives for genomic selection applications and research in plants. Crop Science 55:112.
Hood, L. and Auffray, C. (2013). Participatory medicine: A driving force for revolutionizing healthcare. Genome Medicine 5 (12):110.
Hyman, G., Hodson, D. and Jones, P. (2013). Spatial analysis to support geographic targeting of genotypes to environments. Frontiers in Physiology 4:113.
Khan, Z. R., Amudavi, D. M., Midega, C. A. O., Wanyama, J. M. and Pickett, J. A. (2008). Farmers’ perceptions of a ‘push–pull’ technology for control of cereal stemborers and Striga weed in western Kenya. Crop Protection 27 (6):976987.
Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M. and Thomas, C. J. (2012). Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustainability Science 7 (S1):2543.
Lilja, N. and Bellon, M. (2008). Participatory research practice at the International maize and wheat improvement center (CIMMYT). Development in Practice 18 (4–5):590598.
Malezieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, H., Ozier-Lafontaine, H., Rapidel, B., De Tourdonnet, S. and Valantin-Morison, M. (2009). Mixing plant species in cropping systems: Concepts, tools and models. A review. Agronomy for Sustainable Development 29:4362.
Martin, A. and Sherington, J. (1997). Participatory research methods: Implementation, effectiveness and institutional context. Agricultural Systems 55 (2):195216.
Monsanto Company. (2015). FieldScripts®. Available at: Accessed 18 June 2015.
Nelson, R. J. (2010). Pest management, farmer incomes and health risks in SSA: Pesticides, host plant resistance and other measures. Chapter 6 in The African Food System and its Interaction with Human Health and Nutrition: Research and Policy Priorities, 109127 (Ed Pinstrup-Andersen, P.). New York: Cornell University Press.
Nelson, R. and Coe, R. (2014). Transforming research and development practice to support agroecological intensification of smallholder farming. Journal of International Affairs, 67 (2):107127.
Nelson, R., Orrego, R. and Ortiz, O. (2001). Working with resource-poor farmers to manage plant diseases. Plant Disease 85 (7):684695.
Ojiem, J. O., de Ridder, N., Vanlauwe, B. and Giller, K. E. (2006). Socio-ecological niche: A conceptual framework for integration of legumes in smallholder farming systems. International Journal of Agricultural Sustainability 4 (1):7993.
Oliver, M. A., Bishop, T. F. A. and Marchant, B. P. (Eds). (2013). Precision Agriculture for Sustainability and Environmental Protection. Abingdon: Routledge.
Onduru, D. D., du Preez, C. C., Muchena, F. N., Gachimbi, L. N., de Jager, A. and Gachini, G. N. (2008). Exploring options for integrated nutrient management in semi-arid tropics using farmer field schools: A case study in Mbeere District, eastern Kenya. International Journal of Agricultural Sustainability 6 (3):208228.
Ortiz, O., Orrego, R., Pradel, W., Gildemacher, P., Castillo, R., Otiniano, R. and Kahiu, I. (2011). Incentives and disincentives for stakeholder involvement in participatory research (PR): Lessons from potato-related PR from Bolivia, Ethiopia, Peru and Uganda. International Journal of Agricultural Sustainability 9 (4):522536.
Ortiz-Monasterio, J. and Raun, W. (2007). Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. Paper presented at the International Workshop on Increasing Wheat Yield Potential. CIMMYT, Obregon, Mexico, 20–24 March 2006. Journal of Agricultural Science, 145:215222.
Pampolino, M. F., Manguiat, J., Ramanathan, S., Gines, H. C., Tan, P. S., Chi, T. T. N., Rajendran, R. and Buresh, R. J. (2007). Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agricultural Systems 93 (1):124.
Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V. and Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences of the United States of America 111 (10):38893894.
Pasuquin, J. M., Witt, C. and Pampolino, M. (2010). A new site-specific nutrient management approach for maize in the favourable tropical environments of Southeast Asia. 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia: Published on DVD.
Rivera, W. M. (2011). Public sector agricultural extension system reform and the challenges ahead. The Journal of Agricultural Education and Extension 17 (2):165180.
Rivers, J., Warthmann, N., Pogson, B. J. and Borevitz, J. O. (2015). Genomic breeding for food, environment and livelihoods. Food Security 7 (2):375382.
Rowe, E. C., Van Wijk, M. T., de Ridder, N. and Giller, K. E. (2006). Nutrient allocation strategies across a simplified heterogeneous African smallholder farm. Agriculture, Ecosystems & Environment 116 (1–2):6071.
Singh, B., Singh, Y., Ladha, J. K., Bronson, K. F., Balasubramanian, V., Singh, J. and Khind, C. S. (2002). Chlorophyll meter–and leaf color chart–based nitrogen management for rice and wheat in Northwestern India. Agronomy Journal 94 (4):821829.
Sperling, L., Ashby, J. a., Smith, M. E., Weltzien, E. and Mcguire, S. (2001). Participatory plant breeding: A framework for analyzing diverse approaches. Plant Breeding, 439450.
Tittonell, P., Muriuki, A., Klapwijk, C. J., Shepherd, K. D., Coe, R. and Vanlauwe, B. (2013). Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands. Soil Science Society of America Journal 77 (2):525.
Tittonell, P., Muriuki, A., Shepherd, K. D., Mugendi, D., Kaizzi, K. C., Okeyo, J., Verchot, L., Coe, R. and Vanlauwe, B. (2010). The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa – A typology of smallholder farms. Agricultural Systems 103 (2):8397.
Torero, M. 2014. Information and communication technologies: Farmers, markets, and the power of connectivity. In 2013 Global Food Policy Report, 6374 (Eds Marble, A. and Fritschel, H.). Washington, DC: International Food Policy Research Institute (IFPRI).
Van de Fliert, E. (1993). Integrated pest management: Farmer field schools generate sustainable practices. Paper 93-3. Wageningen Agricultural University, Wageningen, Netherlands.
Van Wijk, M. T., Tittonell, P., Rufino, M. C., Herrero, M., Pacini, C., de Ridder, N. and Giller, K. E. (2009). Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM. Agricultural Systems 102 (1–3):89101.
Veldhuizen, L., van Waters-Bayer, A. and de Zeeuw, H. (1997). Developing Technology with Farmers: A Trainer's Guide for Participatory Learning, 230. London, UK: Zed Books.
Weltzien, E., Christinck, A., Touré, A., Rattunde, F., Diarra, M., Sangare, M. and Coulibaly, M. (2007). Enhancing farmers’ access to sorghum varieties through scaling up participatory plant breeding in Mali, West-Africa. In Bringing Farmers back into Breeding. Experiences with Participatory Plant Breeding and Challenges for Institutionalisation, 5869 (Eds Almekinders, C. and Hardon, J.). Wageningen, Netherlands: Agromisa Special 5, Agromisa.
Weltzien, R. E., Whitaker, M. L., Rattunde, H. F. W., Dhamotharan, M. and Anders, M. M. (1997). Participatory approaches in pearl millet breeding. In Seeds of Choice. Making the Most of New Varieties for Small Farmers, 143170 (Eds Witcombe, J. R. and Farrington, J.). London, UK: Oxford & IBH Publishing Com. Pvt. Ltd. New Delhi, India for Centre for Arid Zone Studies, Bangor, Wales and Overseas Development Institute.
Zingore, S., Murwira, H. K., Delve, R. J. and Giller, K. E. (2007a). Soil type, management history and current resource allocation: Three dimensions regulating variability in crop productivity on African small-holder farms. Field Crops Research 101:296.
Zingore, S., Murwira, H. K., Delve, R. J. and Giller, K. E. (2007b). Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agriculture, Ecosystems & Environment 119 (1–2):112126.




Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed