Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T03:59:21.988Z Has data issue: false hasContentIssue false

Postoperative psychosis in homocystinuria

Published online by Cambridge University Press:  16 April 2020

GW Eschweiler
Affiliation:
Universitätsklinik für Psychiatric und Psychotherapie
R Rosin
Affiliation:
Neurologische Universitätsklinik Tübingen, Osianderstrasse 24,72076Tübingen, Germany
P Thier
Affiliation:
Neurologische Universitätsklinik Tübingen, Osianderstrasse 24,72076Tübingen, Germany
H Giedke
Affiliation:
Universitätsklinik für Psychiatric und Psychotherapie
Get access

Summary

Young homocystinuria patients suffering from lens dislocation frequently have to undergo eye surgery. We describe a 16-year-old girl with mild mental retardation who became psychotic-delirant immediately after the last of three lentectomia operations performed under general thiopental anaesthesia. Because methionine, homocysteine, its oxidation product homocysteate and cysteine are potent glutamate agonists, the disturbance of the sulphur containing amino acid (SCAA) metabolism in homocystinuria patients may alter the function of cerebral glutamatergic transmission. The chronic and acute neurological and psychiatric symptoms of homocystinuria patients offer a clue to studies of the neurotoxic but also antipsychotic potency of glutamate agonists like the SCAAs in humans.

Type
Case report
Copyright
Copyright © Elsevier, Paris 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, MH, Folstein, SE, Abbey, H, Pyeritz, RE. Psychiatric Manifestations of Homocystinuria due to Cystathionine Beta-Synthase deficiency: Prevalence, Natural History and Vitamin B6-Responsiveness. Am J Med Genet. 1987; 26: 959969CrossRefGoogle ScholarPubMed
Bracken, P, Coll, P. Homocystinuria and schizophrenia. J Nerv Ment Dis. 1985; 173: 5155CrossRefGoogle Scholar
Bracken, P, Coll, P. Homocystinuria and schizophrenia. J Nerv Ment Dis. 1985; 173: 5155CrossRefGoogle Scholar
Cuenod, M, Do, KQ, Streit, P. Homocysteic acid as an endogenous excitatory amino acid. TiPS. 1990; 11: 477478Google ScholarPubMed
Curtis, DP, Watkins, JC. Acidic amino acids with strong excitatory actions on mammalian neurones. J Physlol. 1963; 166: 114CrossRefGoogle ScholarPubMed
Do, KQ, Herrling, PL, Streit, P, Turski, WA, Cuenod, M. In vitro release and electrophysiological effects in situ of homocys-teic acid, an endogenous N-Methyl-d-aspartic acid agonist, in the mammalian striatum. J Neurosci. 1986; 68: 22262234CrossRefGoogle Scholar
Frankl-Hochwart, L. Über Psychosen nach Augenoperationen. Jahrb Psychiatr. 1890; 9: 152181Google Scholar
Garfield, JM, Garfield, FB, Stone, JG, Hopkins, D, Johns, LA. A comparison of psychologic responses to ketamine and thio-pental-nitrous oxide-halothane anesthesia. Anesthesiology. 1972; 36: 329338CrossRefGoogle ScholarPubMed
Ito, S, Provini, L, Cherubini, E. L-homocysteic acid mediates synaptic excitation at NMDA receptors in the hippocampus. Neurosci Lett. 1991; 124: 157161CrossRefGoogle ScholarPubMed
Kempster, PA, Brenton, DP, Gale, AN, Stern, GM. Dystonia in homocystinuria. J Neurol Neurosurg Psychiatry. 1988; 51: 859862CrossRefGoogle ScholarPubMed
Kim, JP, Koh, JY, Choi, DW. L-Homocysteate is a potent neurotoxin and on cultured neurons. Brain Res. 1987; 437: 103110CrossRefGoogle Scholar
Krystal, JH, Karper, LP, Seibyl, JP, et al.Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomometic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994; 51: 199214CrossRefGoogle ScholarPubMed
Levine, AM. Visual hallucinations and cataracts. Ophthalmic Surg. 1980; 11: 9598Google ScholarPubMed
Linn, L, Kahn, RL, Coles, R, Cohen, J, Marshall, D, Weinstein, EA. Patterns of behavior disturbance following cataract extraction. Am J Psychiatry. 1953; 110: 281289CrossRefGoogle ScholarPubMed
Lipton, SA, Rosenberg, PA. Excitatory amino acids as a final common pathway for neurological disorders. New Engl J Med. 1994; 330: 613622Google Scholar
Lahti, AS, Koffel, B, LaPorte, D, Tamminga, CA. Subanesthetic Doses of Ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology. 1995; 13: 919CrossRefGoogle ScholarPubMed
Ludolph, AC, Ullrich, K, Bick, U, Fahrendorf, G, Przyrembel, H. Functional and morphological deficits in late-treated patients with homocystinuria a clinical, electrophysiologic and MRI study. Ada Neurol Scand. 1991; 83: 161165CrossRefGoogle ScholarPubMed
Morris, RGM, Anderson, E, Lynch, GS, Baudry, M. Selective impairment of learning and blockade of long-term potentia-tion by N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986; 319: 774779CrossRefGoogle Scholar
Mudd, SH, Levy, HL, Skovby, F. Disorders of transsulfuration Scriver, RC, Beandet, ALThe Metabolic Basis of Inherited Disease New York: McGraw Hill, 1989 693734Google Scholar
Olney, JW. Excitatory amino acids in neuropsychiatric disorders. Biol Psychiatry. 1989; 26: 505525CrossRefGoogle ScholarPubMed
Olney, JW, Oi, LH, Rhee, V. Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res. 1971; 14: 6176CrossRefGoogle ScholarPubMed
Park, LC, Baldessarini, RJ, Kety, SS. Methionine effects in chronic schizophrenia. Arch Gen Psychiatry. 1965; 12: 346351CrossRefGoogle Scholar
Regland, B, Johansson, BV, Gottfries, CG. Homocystinemia and schizophrenia as a case of methylation deficiency. J Neural Transm [GenSect]. 1994; 98: 143152CrossRefGoogle Scholar
Wozniak, DF, Olney, JW, Kettinger, L III. Effects of Mk-801 on memory retention in the rat. Neurosci Abstr. 1988; 14: 941951Google Scholar
Submit a response

Comments

No Comments have been published for this article.