Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-12T14:14:14.525Z Has data issue: false hasContentIssue false

Experimental Approach to the Study of the European Mode 1 Lithic Record: The Bipolar Core Technology at Vallparadís (Barcelona, Spain)

Published online by Cambridge University Press:  09 January 2017

Policarpo Sánchez-Yustos
Affiliation:
University of Valladolid, Spain
Joan Garcia Garriga
Affiliation:
Department of Prehistory, Rovira i Virgili University, Tarragona, Spain Open University of Catalonia, Barcelona, Spain
Kenneth Martínez
Affiliation:
Department of Prehistory, Rovira i Virgili University, Tarragona, Spain

Abstract

In this article we present an experimental approach focused on bipolar core technology. The main goal is to define the major constraints and parameters faced when identifying the bipolar component of the Early Pleistocene site of Vallparadís (Spain). For these experiments we have used the same varieties of raw materials and blanks as those documented in the archaeological record. The methodological framework applied in the study of the experimental sample is largely based on the most diagnostic parameters recurrently cited in bipolar-related literature: double striking platforms and opposite battering damage. This information has been encoded by grouping blanks, cores and detached elements in morphotechnical types. The results suggest that the reduction process is conditioned by the morphology and fracture consistency of the knapped nodules. Although blank morphology does not categorically determine the final shape of the cores and flakes, there is a clear correlation between them. The most diagnostic parameter for identifying bipolar objects in statistical terms is the presence of opposite battering damage. However, there are many non-diagnostic pieces generated throughout the bipolar knapping process. Hence we consider it pertinent to analyse the archaeological assemblage of Vallparadís according to alternative methodological approaches (e.g. morphotechnical types).

Dans cet article nous présentons une approche expérimentale centrée sur la technologie bipolaire de l'enclume. L'objet principal de cette étude est d'identifier les contraintes et les paramètres qui définissent la composante bipolaire du Pléistocène ancien du site de Vallparadís en Espagne. Nous avons utilisé pour ce travail expérimental les mêmes variétés de matières premières et de matrices que celles que l'on retrouve dans le matériel archéologique. Le cadre méthodologique employé dans l’étude de notre échantillon se base surtout sur les éléments diagnostiques les plus fréquemment rencontrés dans la littérature spécialisée concernant les techniques bipolaires : plateformes de percussion doubles et endommagement d'un côté par le percuteur mobile (coup), et de l'autre par le percuteur dormant ou enclume (par contrecoup). Cette information a été catégorisée en groupant les matrices, les nucléi et les éléments détachés en types morphotechniques. Il en ressort que le processus de réduction est conditionné par la morphologie et la consistance de fracture des nodules. Quoique la morphologie des matrices ne définisse pas catégoriquement la forme finale des nuclei et des éclats, on observe une nette corrélation entre eux. La présence d'un endommagement produit sur les plans opposés par le percuteur (coup), et de l'autre par l'enclume (par contrecoup) constitue le paramètre le plus diagnostique pour identifier les artéfacts bipolaires du point de vue statistique Mais il existe de nombreuses pièces non-diagnostiques produites par la taille d'objets bipolaires. Nous pensons donc qu'il est pertinent d'analyser le matériel archéologique de Vallparadís en suivant une méthode alternative, types morphotechniques par exemple). Translation by Madeleine Hummler

In diesem Artikel präsentieren wir ein experimentelles Verfahren, das sich auf die bipolare Technologie der Herstellung von Kernen konzentriert. Das Hauptziel ist, die wesentlichsten Bedingungen und Faktoren, die bei der Bestimmung von bipolaren Komponenten des Frühpleistozäns aus Vallparadís in Spanien vorkommt, zu definieren. Für diese Experimente haben wir die gleichen Rohstoffarten und Rohlingen als diejenige des Fundmaterials von Vallparadís verwendet. Der methodologische Rahmen zur Untersuchung unserer Proben beruht weitgehend auf die diagnostischen Eigenheiten, die am meisten vorkommen und die am häufigsten in der Fachliteratur zitiert werden: doppelte Schlagfläche und gegenüberliegende Schlagbeschädigung. Diese Information wurde dann in Typen von Rohlingen, Kernen und Abschlägen eingeteilt. Es ergibt sich, dass das Reduktionsverfahren von der Morphologie und der Bruchkonsistenz des Knollens abhängt. Obschon die Morphologie der Rohlinge nicht unbedingt die endgültige Form der Kerne und der Abschläge bestimmt, ist ein einen deutlicher Zusammenhang zwischen ihnen zu erkennen. Statistisch ist die Anwesenheit von gegenüberliegender Schlagbeschädigung der wichtigste Parameter bei der Bestimmung von bipolaren Artefakten. Es gibt aber auch sehr viele nichtdiagnostische Stücke, die im bipolaren Herstellungsverfahren vorkommen. Deswegen halten wir es als passend, dass der Befund von Vallparadís nach alternativen methodologischen Verfahren (wie morphotechnische Typen) untersucht wird. Translation by Madeleine Hummler

Type
Articles
Copyright
Copyright © European Association of Archaeologists 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahler, S.A. 1989. Experimental Knapping with KRF and Midcontinent Cherts: Overview and Applications. In: Amick, D.S. & Mauldin, R.P., eds. Experiments in Lithic Technology. British Archaeological Reports International Series, 528. Oxford: British Archaeological Reports, pp. 199234.Google Scholar
Andrefsky, W. 1998. Lithics, Macroscopic Approaches to Analysis. Cambridge: Cambridge University Press.Google Scholar
Arzarello, M., Pavia, G., Peretto, C., Petronio, C. & Sardella, R. 2012. Evidence of an Early Pleistocene Hominin Presence at Pirro Nord (Apricena, Foggia, Southern Italy): P13 Site. Quaternary International, 267: 5661.CrossRefGoogle Scholar
Arzarello, M., Peretto, C. & Moncel, M.-H. 2015. The Pirro Nord Site (Apricena, FG, Southern Italy) in the Context of the First European Peopling: Convergences and Divergences. Quaternary International, 389: 255–63.Google Scholar
Aureli, D., Rocca, R., Lemorini, C., Modesti, V., Scaramucci, S., Milli, S., Giaccio, B., Marano, F., Palombo, M.R. & Contardi, A. 2016. Mode 1 or Mode 2? ‘Small Tools’ in the Technical Variability of the European Lower Palaeolithic: The Site of Ficoncella (Tarquinia, Lazio, central Italy). Quaternary International, 393: 169–84.CrossRefGoogle Scholar
Barsky, D., Celiberti, V., Cauche, D., Grégoire, S., Lebègue, F., de Lumley, H. & Toro-Moyano, I. 2010. Raw Material Discernment and Technological Aspects of the Barranco León and Fuente Nueva 3 Stone Assemblages (Orce, Southern Spain). Quaternary International, 223–24: 201–19.CrossRefGoogle Scholar
Berman, M.J., April, K. & Whyte, T. 1999. Form and Function of Bipolar Lithic Artefacts from the Three Dog Site, San Salvador, Bahamas. Latin American Antiquity, 10: 415–32.Google Scholar
Binford, L.R. & Quimby, G.I. 1963. Indian Sites and Chipped Stone Materials in the Northern Lake Michigan Area. Fieldiana Anthropology, 36: 277307.Google Scholar
Bradbury, A.P. & Philip, J.C. 2004. Combining Aggregate and Individual Methods of Flake Debris Analysis: Aggregate Trend Analysis. North American Archaeologist, 25: 6590.CrossRefGoogle Scholar
Braun, D.R., Plummer, T.W., Ferraro, J.V., Ditchfield, P. & Bishop, L.C. 2009. Raw Material Quality and Oldowan Hominin Toolstone Preferences: Evidence from Kanjera South, Kenya. Journal Archaeological Science, 36: 1605–14.CrossRefGoogle Scholar
Byrne, F., Proffitt, T., Arroyo, A. & de la Torre, I. 2015. A Comparative Analysis of Bipolar and Freehand Experimental Knapping Products from Olduvai Gorge, Tanzania. Quaternary International, in press. doi:10.1016/j.quaint.2015.08.018.Google Scholar
Callahan, E. 1979. The Basics of Biface Knapping in the Eastern Fluted Point Tradition. A Manual for Flintknappers and Lithic Analysts. Archaeology of Eastern North America, 7. Washington (CT): Eastern States Archeological Federation.Google Scholar
Carbonell, E. & Rodríguez, X.P. 1994. Early Middle Pleistocene Deposits and Artefacts in the Gran Dolina site (TD4) of the ‘Sierra de Atapuerca’ (Burgos, Spain). Journal of Human Evolution, 26(4): 291311.Google Scholar
Carbonell, E., Bermúdez de Castro, J.M., Arsuaga, J.L., Díez, J.C., Rosas, A., Cuenca-Bescós, G., Sala, R., Mosquera, M. & Rodríguez, X.P. 1995. Lower Pleistocene Hominins and Artifacts from Atapuerca-TD6 (Spain). Science, 269(5225): 826–30.CrossRefGoogle ScholarPubMed
Carbonell, E., Bermúdez de Castro, J.M., Parés, J.M., Pérez, G.A., Cuenca-Bescós, G., Ollé, A., Mosquera, M., Huguet, R., van der Made, J., Rosas, A., Sala, R., Vallverdú, J., García, N., Granger, D.E., Martinón-Torres, M., Rodríguez, X.P., Stock, G.M., Vergès, J.M., Allué, E., Burjachs, F., Cáceres, I., Canals, A., Benito, A., Díez, C., Lozano, M., Mateos, A., Navazo, M., Rodríguez, J., Rosell, J. & Arsuaga, J.L. 2008. The First Hominin of Europe. Nature, 452(7186): 465–69.CrossRefGoogle ScholarPubMed
Carbonell, E., García-Antón, M.D., Mallol, C., Mosquera, M., Ollé, A., Rodríguez, X.P., Sahnouni, M., Sala, R. & Vergès, J.M. 1999. The TD6 Level Lithic Industry from Gran Dolina, Atapuerca (Burgos, Spain): Production and Use. Journal of Human Evolution, 37: 653–93.CrossRefGoogle ScholarPubMed
Carbonell, E., Mosquera, M., Rodríguez, X.P. & Sala, R. 1996. The First Human Settlement of Europe. Journal of Anthropological Research, 52: 107–14.CrossRefGoogle Scholar
Crabtree, D.E. 1967. Notes on Experiments in Flintknapping: 3. The Flintknappers Raw Materials. Tebiwa, 10: 825.Google Scholar
de la Peña, P. 2015a. The Interpretation of Bipolar Knapping in African Stone Age Studies. Current Anthropology, 56: 911–23.Google Scholar
de la Peña, P. 2015b. A Qualitative Guide to Recognize Bipolar Knapping for Flint and Quartz. Lithic Technology, 40: 116.Google Scholar
de la Peña, P. & Wadley, L. 2014. Quartz Knapping Strategies in the Howiesons Poort at Sibudu (KwaZulu-Natal, South Africa). PLOS ONE, 9, doi:10.1371/journal.pone.0101534.Google Scholar
de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A. & Proffitt, T. 2013. Experimental Protocols for the Study of Battered Stone Anvils from Olduvai Gorge (Tanzania). Journal of Archaeological Science, 40: 313–32.CrossRefGoogle Scholar
de Lumley, H., Barsky, D. & Cauche, D. 2009. Les prèmieres étapes de la colonisation de l'Europe et l'arrivée de l'Homme sur les rives de la Méditerranée. L'Anthropologie, 113: 146.Google Scholar
Despriée, J., Gageonnet, R., Voinchet, P., Bahain, J.-J., Falguères, C., Varache, F., Courcimault, G. & Dolo, J.M. 2006. Une occupation humaine au Pléistocène inférieur sur la bordure nord du Massif central. Comptes Rendus Palevol, 5: 821–28.Google Scholar
Despriée, J., Voinchet, P., Tissoux, H., Bahain, J.-J., Falguères, C., Courcimault, G., Dépontc, J., Moncel, M.-H., Robin, S., Arzarello, M., Sala, R., Marquer, L., Messagera, E., Puaud, S. & Abdessadok, S. 2011. Lower and Middle Pleistocene Human Settlements Recorded in Fluvial Deposits of the Middle Loire River Basin, Centre Region, France. Quaternary Science Reviews, 30: 1474–85.Google Scholar
Despriée, J., Voinchet, P., Tissoux, H., Moncel, M.-H., Arzarello, M., Robin, S., Bahain, J.-J., Falguères, C., Courcimault, G., Dépont, J., Gageonnet, R., Marquer, L., Messager, E., Adbessadok, S. & Puaud, S. 2010. Lower and Middle Pleistocene Settlements in the Middle Loire River Basin, Centre Region, France. Quaternary International, 223–24: 345–59.Google Scholar
Díez-Martín, F., Sánchez-Yustos, P., Domínguez, M., Mabulla, A. & Barba, R. 2009. Were Olduvai Hominins Making Butchering Tools or Battering Tools? Analysis of a Recently Excavated Lithic Assemblage from BK (Bed II, Olduvai Gorge, Tanzania). Journal of Anthropological Archaeology, 28: 274–89.CrossRefGoogle Scholar
Díez-Martín, F., Sánchez-Yustos, P., Domínguez, M. & Prendergast, M. 2011. An Experimental Study of Bipolar and Freehand Knapping of Naibor Soit Quartz from Olduvai Gorge (Tanzania). American Antiquity, 76: 690708.Google Scholar
Díez-Martín, F., Cuartero, F., Sánchez-Yustos, P., Baena, J., Domínguez-Rodrigo, M. & Rubio, D. 2012. Testing Cognitive Skills in Early Pleistocene Hominins: An Analysis of the Concepts of Hierarchization and Predetermination in the Lithic Assemblages of Type Section (Peninj, Tanzania). In: Domínguez-Rodrigo, M, ed. Stone Tools and Fossil Bones. Debates in the Archaeology of Human Origins. Cambridge: Cambridge University Press, pp: 245309.CrossRefGoogle Scholar
Domanski, M., Webb, J. & Boland, J. 1994. Mechanical Properties of Stone Artifact Materials and the Effect of Heat Treatment. Archaeometry, 36: 177208.CrossRefGoogle Scholar
Driscoll, K. 2010. Understanding Quartz Technology in Early Prehistoric Ireland (unpublished PhD dissertation, University College Dublin).Google Scholar
Driscoll, K. 2011. Vein Quartz in Lithic Traditions: An Analysis Based on Experimental Archaeology. Journal of Archaeological Science, 38: 734–45.CrossRefGoogle Scholar
Duval, M., Bahain, J.-J., Falguères, C., Garcia, J., Guilarte, V., Grün, R., Martínez, K., Moreno, D., Shao, Q. & Voinchet, P. 2015. Revisiting the ESR Chronology of the Early Pleistocene Hominid Occupation at Vallparadís (Barcelona, Spain). Quaternary International, 389: 213–23.Google Scholar
Duval, M., Moreno, D., Shao, Q., Voinchet, P., Falguères, C., Bahain, J., Garcia, T., Garcia, J. & Martínez, K. 2011. Datación por ESR del yacimiento arqueológico del Pleistoceno inferior de Vallparadís (Terrassa, Cataluña, España). Trabajos de Prehistoria, 68: 724.Google Scholar
Flenniken, J.F. 1981. Replicative Systems Analysis: A Model Applied to Vein Quartz Artefacts from the Hoko River Site. Washington State University Laboratory of Anthropology Reports of Investigations 59. Washington: Pullman.Google Scholar
Gallotti, R. & Peretto, C. 2015. The Lower/Early Middle Pleistocene Small Dèbitage Productions in Western Europe: New Data from Isernia La Pineta t.3c (Upper Volturno Basin, Italy). Quaternary International, 357: 264–81.Google Scholar
Garcia, J., Landeck, G., Martínez, K. & Carbonell, E. 2013b. Hominin Dispersals from the Jaramillo Subchron in Central and South-Western Europe: Untermassfeld (Germany) and Vallparadís (Spain). Quaternary International, 316: 7393.CrossRefGoogle Scholar
Garcia, J., Martínez, K. and Carbonell, E. 2011. Continuity of the First Human Occupation in the Iberian Peninsula: Closing the Archaeological Gap. Comptes Rendus Palevol, 10: 279–84.Google Scholar
Garcia, J., Martínez, K. & Carbonell, E. 2013a. The Early Pleistocene Stone Tools from Vallparadís (Barcelona, Spain): Rethinking the European Mode 1. Quaternary International, 316: 94114.CrossRefGoogle Scholar
Garcia, J., Martínez, K., Carbonell, E., Agustí, J. & Burjachs, F. 2012. Defending the Early Human Occupation of Vallparadís (Barcelona, Iberian Peninsula): A Reply to Madurell-Malapeira et al. Journal of Human Evolution, 63: 568–75.Google Scholar
Garcia, J., Martínez, K., Cuenca-Bescós, G. & Carbonell, E. 2014. Human Occupation of Iberia Prior to the Jaramillo Magnetochron (>1.07 Myr). Quaternary Science Reviews, 98: 8499.Google Scholar
Gurtov, A.N. & Eren, M.I. 2014. Lower Palaeolithic Bipolar Reduction and Hominin Selection of Quartz at Olduvai Gorge, Tanzania: What's the Connection? Quaternary International, 322–23: 285–91.Google Scholar
Inizan, M.-L., Reduron-Ballinger, M., Roche, H. & Tixier, J. 1999. Technology and Terminology of Knapped Stone. Nanterre: Cercle de Recherches et d'Etudes Préhistoriques.Google Scholar
Jeske, R.J. 1992. Energetic Efficiency and Lithic Technology: An Upper Mississippian Example. American Antiquity, 57: 467–81.CrossRefGoogle Scholar
Jeske, R.J. & Lurie, L. 1993. The Archaeological Visibility of Bipolar Technology: An Example from the Koster Site. Midcontinental Journal of Archaeology, 18: 131–60.Google Scholar
Kobayashi, H. 1975. The Experimental Study of Bipolar Flakes. In: Swanson, E., ed. Lithic Technology: Making and Using Stone Tools. The Hague: Mouton, pp. 115–27.Google Scholar
Li, F. 2016. An Experimental Study of Bipolar Reduction at Zhoukoudian Locality 1, North China. Quaternary International, 400: 2329.Google Scholar
Lombera, A., Bargalló, A., Terradillo-Bernal, M., Huguet, R., Vallverdú, J., García-Antón, M.D., Mosquera, M., Ollé, A., Sala, R., Carbonell, E. & Rodríguez-Álvarez, X.P. 2005. The Lithic Industry of Sima del Elefante (Atapuerca, Burgos, Spain) in the Context of Early and Middle Pleistocene Technology in Europe. Journal of Human Evolution, 82: 95106.Google Scholar
Lombera, A., Rodríguez-Álvarez, X.P., Peña, L., Sala-Ramos, R., Despriée, J., Moncel, M.H., Gourcimault, G., Voinchet, P. and Falguères, C. 2016. The Lithic Assemblage from Pont-de-Lavaud (Indre, France) and the Role of the Bipolar-on-anvil Technique in the Lower and Early Middle Pleistocene Technology. Journal of Anthropological Archaeology, 41: 159–84.Google Scholar
Madurell-Malapeira, J., Minwer-Barakat, R., Alba, D.M., Garcés, M., Gómez, M., Aurell-Garrido, J., Ros-Montoya, S., Moyà-Solà, S. & Berástegui, X. 2010. The Vallparadís Section (Terrassa, Iberian Peninsula) and the Latest Villafranchian Faunas of Europe. Quaternary Science Reviews, 29: 3972–82.Google Scholar
Magne, M.P.R. 1985. Lithics and Livelihood: Stone Tool Technologies of Central and Southern British Columbia. Mercury Series, Archaeological Survey of Canada Paper No. 133, Ottawa: National Museum of Man.Google Scholar
Martínez, K., Garcia, J., Burjachs, F., Yll, R. & Carbonell, E. 2014. Early Human Occupation of Iberia: The Chronological and Palaeoclimatic Inferences from Vallparadís (Barcelona, Spain). Quaternary Science Reviews, 85: 136–46.Google Scholar
Martínez, K., Garcia, J. & Carbonell, E. 2013. Hominin Multiple Occupations in the Early and Middle Pleistocene Sequence of Vallparadís (Barcelona, Spain). Quaternary International, 316: 115–22.CrossRefGoogle Scholar
Martínez, K., Garcia, J., Carbonell, E., Agustí, J., Bahain, J.-J., Blain, H.-A., Burjachs, F., Cáceres, I., Duval, M., Falguères, C., Gómez, M. & Huguet, R. 2010. A New Lower Pleistocene Archeological Site in Europe (Vallparadís, Barcelona, Spain). Proceedings of the National Academy of Sciences, 107: 5762–67.Google Scholar
Minwer-Barakat, R., Madurell-Malapeira, J., Alba, D.M. Aurell-Garrido, J. & Moyà-Solà, S. 2011. Pleistocene Rodents from the Torrent de Vallparadís Section (Northeastern Spain): Biochronological Implications. Journal of Vertebrate Paleontology, 31: 117.Google Scholar
Mosquera, M., Ollé, A. & Rodríguez, X.P. 2013. From Atapuerca to Europe: Tracing The Earliest Peopling of Europe. Quaternary International, 295: 130–37.Google Scholar
Muttoni, G., Scardia, G. & Kent, D.V. 2013. A Critique of Evidence for Human Occupation of Europe Older than the Jaramillo Subchron (~1 Ma): Comment on ‘The Oldest Human Fossil in Europe from Orce (Spain)’ by Toro-Moyano et al. Journal of Human Evolution, 65: 746–49.Google Scholar
Ollé, A., Mosquera, M., Rodríguez, X.P., de Lombera, A., García-Antón, D., García-Medrano, P., Peña, L., Menéndez, L., Navazo, M., Terradillos, M., Bargalló, A., Márquez, B., Sala, R. & Carbonell, E. 2013. The Early and Middle Pleistocene Technological Record from Sierra de Atapuerca (Burgos, Spain). Quaternary International, 295: 138–67.Google Scholar
Parfitt, S.A., Ashton, N.M., Lewis, S.G., Abel, R.L., Coope, G.R., Field, M.H., Gale, R., Hoare, P.G., Larkin, N.R., Lewis, M.D., Karloukovski, V., Maher, B.A., Peglar, S.M., Preece, R.C., Whittaker, J.E. & Stringer, C.B. 2010. Early Pleistocene Human Occupation at the Edge of the Boreal Zone in Northwest Europe. Nature, 466(7303): 229–33.Google Scholar
Peretto, C., Amore, F.O., Antoniazzi, A., Bahain, J.-J., Cattani, L., Cavallini, E., Esposito, P., Falguères, C., Gagnepain, J., Hedley, I., Laurent, M., Lebreton, V., Longo, L., Milliken, S., Monegatti, P., Ollé, A., Pugliese, N., Renault-Miskovsky, J., Sozzi, M., Ungaro, S., Vannucci, S., Vergès, J.M., Wagner, J.-J. & Yokoyama, Y. 1998. L'industrie lithique de Ca'Belvedere di Monte Poggiolo: stratigraphie, matière première, typologie, remontages et traces d'utilisation. L'Anthropologie, 102: 343465.Google Scholar
Peretto, C., Arnaud, J., Moggi-Cecchi, J., Manzi, G., Nomade, S., Pereira, A., Falguères, C., Bahain, J.-J., Grimaud-Hervé, D., Berto, C., Sala, B., Lembo, G., Muttillo, B., Gallotti, R., Thun Hohenstein, U., Vaccaro, C., Coltorti, M. & Arzarello, M. 2015. A Human Deciduous Tooth and New 40Ar/39Ar Dating Results from the Middle Pleistocene Archaeological Site of Isernia La Pineta, Southern Italy. PLOS ONE, doi:10.1371/journal.pone.0140091.Google Scholar
Proffitt, T. & de la Torre, I. 2014. The Effect of Raw Material on Inter-analyst Variation and Analyst Accuracy for Lithic Analysis: A Case Study from Olduvai Gorge. Journal of Archaeological Science, 45: 270–83.CrossRefGoogle Scholar
Prous, A. & Lima, M.A. 1990. A tecnologia de debitagem do quartzo no centro de Minas Gerais: lascamento bipolar. Arquivos do Museu de História Natural, 11: 91114.Google Scholar
Roebroeks, W. & van Kolfschoten, T. 1995. The Earliest Occupation of Europe. The Netherlands: University of Leiden.Google Scholar
Sánchez-Yustos, P., Diez-Martín, F., Díaz, I., Fraile, C., Duque, J. & Domínguez-Rodrigo, M. 2015. Production and Use of Percussive Stone Tools in the Early Stone Age: Experimental Approach to the Lithic Record of Olduvai Gorge, Tanzania. Journal of Archaeological Science: Reports, 2: 367–83.Google Scholar
Sánchez-Yustos, P., Díez-Martín, F., Domínguez-Rodrigo, M. & Tarriño Vinagre, A. 2012. Discriminación experimental de los rasgos técnicos en la talla bipolar y a mano alzada en lascas a través de los cuarzos de Naibor Soit (Garganta de Olduvai, Tanzania). Munibe (Antropologia-Arkeologia), 63: 526.Google Scholar
Shott, M.J. 1989. Bipolar Industries: Ethnographic Evidence and Archaeological Implications. North American Archaeologist, 10: 124.Google Scholar
Shott, M.J. 1999. On Bipolar Reduction and Splintered Pieces. North American Archaeology, 20: 217–38.Google Scholar
Stout, D., Quade, J., Semaw, S., Rogers, M.J. & Levin, N.E. 2005. Raw Material Selec- tivity of the Earliest Stone Toolmakers at Gona, Afar, Ethiopia. Journal of Human Evolution, 48: 365–80.Google Scholar
Tallavaara, M., Manninen, M., Hertell, E. & Rankama, T. 2010. How Flakes Shatter: A Critical Evaluation of Quartz Fracture Analysis. Journal of Archaeological Science, 37: 2442–48.Google Scholar
Toro-Moyano, I., Barsky, D., Cauche, D., Celiberti, V., Grégoire, S., Lebègue, F., Moncel, M.H. & de Lumley, H. 2011. The Archaic Stone Tool Industry from Barranco León and Fuente Nueva 3 (Orce, Spain): Evidence of the Earliest Hominin Presence in Southern Europe. Quaternary International, 243: 8091.Google Scholar
Vergès, J.M. & Ollé, A. 2011. Technical Microwear and Residues in Identifying Bipolar Knapping on an Anvil: Experimental Data. Journal of Archaeological Science, 38: 1016–25.Google Scholar

Sánchez-Yustos supplementary material

Video 1

Download Sánchez-Yustos supplementary material(Video)
Video 17.7 MB
Supplementary material: File

Sánchez-Yustos supplementary material

Table 1-9

Download Sánchez-Yustos supplementary material(File)
File 276 KB