Skip to main content Accessibility help
×
Home

Structural stability for the resonant porous penetrative convection

  • YAN LIU (a1)

Abstract

We study the structural stability of a problem in a porous medium when the density of saturating liquid is a nonlinear function of temperature and an internal heat source is present. We prove a convergence result for the Forchheimer coefficient. That is to say, when λ → 0, the solution of the non-isothermal flow in a porous medium of the Forchheimer type, see (1.1), can converge to the solution of the equivalent Darcy type.

Copyright

References

Hide All
[1]Ames, K. A. & Payne, L. E. (1990) On stabilizing against modelling errors in a penetrative convection problem for a porous medium. Models Methods Appl. Sci. 4, 733740.
[2]Ames, K. A. & Straughan, B. (1997) Non-Standard and Improperly Posed Problems (Mathematics in Science and Engineering series, Vol. 194), Academic Press, San Diego, CA.
[3]Celebi, A. O., Kalantarov, V. K. & Ugurlu, D. (2005) Continuous dependence for the convective Brinkman-Forchheimer equations. Appl. Anal. 84, 877888.
[4]Celebi, A. O., Kalantarov, V. K. & Ugurlu, D. (2006) On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett. 19, 801807.
[5]Chadam, J. & Qin, Y. (1997) Spatial decay estimates for flow in a porous medium, SIAM. J. Math. Anal. 28 (4), 808830.
[6]Franchi, F. & Straughan, B. (2003) Continuous dependence and decay for the Forchheimer equations. Proc. R. Soc. Lond. A 459, 31953202.
[7]Kaloni, P. N. & Guo, J. (1996) Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer Model. J. Math. Anal. Appl. 204, 138155.
[8]Kaloni, P. N. & Qin, Y. (1996) Steady nonlinear double-diffusive convection in a porous medium base upon the Brinkman-Forchheimer model. J. Math. Anal. Appl. 204, 138155.
[9]Kaloni, P. N. & Qin, Y. (1998) Spatial decay estimates for flow in the Brinkman-Forchheimer Model. Q. Appl. Math. 56, 7187.
[10]Lin, C. & Payne, L. E. (2007a) Structural stability for a Brinkman fluid. Math. Meth. Appl. Sci. 30, 567578.
[11]Lin, C. & Payne, L. E. (2007b) Structural stability for the Brinkman equations of flow in double diffusive convection. J. Math. Anal. Appl. 325, 14791490.
[12]Lin, C. & Payne, L. E. (2008) Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow. J. Math. Anal. Appl. 342, 311325.
[13]Liu, Y., DU, Y. & Lin, C. (2010) Convergence results for Forchheimers equations for fluid flow in porous media. J. Math. Fluid. Mech. 12, 576593.
[14]Nield, D. A. & Bejian, A., (1992) Convection in Porous Media, Springer, New York.
[15]Payne, L. E., Rodrigues, J. F. & Straughan, B. (2001) Effect of anisotropic permeability on Darcy's law. Math. Methods Appl. Sci. 24, 427438.
[16]Payne, L. E. & Song, J. C. (1997) Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinite cylinder. Contin. Mech. Thermodyn. 9, 175190.
[17]Payne, L. E. & Song, J. C. (2000) Spatial decay for a model of double diffusive convection in Darcy and Brinkman flows. Z. Angew. Math. Phys. 51, 867880.
[18]Payne, L. E. & Song, J. C. (2002) Spatial decay bounds for the Forchheimer equations. Int. J. Eng. Sci. 40, 943956.
[19]Payne, L. E. & Song, J. C. (2007) Spatial decay in a double diffusive convection problem in Darcy flow. J. Math. Anal. Appl. 330, 864875.
[20]Payne, L. E., Song, J. C. & Straughan, B. (1999) Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. R. Soc. Lond. A 45S, 21732190.
[21]Payne, L. E. & Straughan, B. (1996) Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media. J. Math. Pures Appl. 75, 255271.
[22]Payne, L. E. & Straughan, B. (1998) Structural stability for the Darcy equations of flow in porous media. Proc. R. Soc. Lond. A 454, 16911698.
[23]Payne, L. E. & Straughan, B. (1999) Convergence and continuous dependence for the Brinkman-Forchheimer equations. Stud. Appl. Math. 102, 419439.
[24]Qin, Y. & Kaloni, P. N. (1998) Spatial decay estimates for plane flow in the Brinkman-Forchheimer model. Quart. Appl. Math. 56, 7187.
[25]Song, J. C. (2002) Spatial decay estimates in time dependent double-diffusive Darcy plane flow. J. Math. Anal. Appl. 207, 7688.
[26]Straughan, B. (2004) The Energy Method, Stability and Nonlinear Convection, 2nd ed. (Appl. Math. Sci. Ser., Vol. 91), Springer, New York.
[27]Straughan, B. (2008) Stability and Wave Motion in Porous Media (Appl. Math. Sci. Ser. Vol. 165), Springer, New York.
[28]Straughan, B. (2011) Continuous dependence on the heat source in resonant porous penetrative convection. Stud. Appl. Math. 127, 302314.
[29]Weatherburn, C. E. (1980) Differential Geometry of Three Dimensions, Cambrige University Press, Cambridge, UK.

Keywords

Structural stability for the resonant porous penetrative convection

  • YAN LIU (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed