Skip to main content Accessibility help
×
Home

A Stefan model for mass transfer in a rotating disk reaction vessel

  • C. S. BOHUN (a1)

Abstract

In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective–reaction–diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.

Copyright

References

Hide All
[1]Abbad, M. & Chang, F. F. Schlumberger, Personal communication. The typical stone sample is 1.5 inches in diameter and held within a 5 inch diameter reaction vessel.
[2]Batchelor, G. K. (1951) Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Math. 4 (1), 2941.
[3]Bernardez, L. A. (2008) Dissolution of polycyclic aromatic hydrocarbons from a non-aqueous phase liquid into a surfactant solution using a rotating disk apparatus. Colloids Surf. A: Physicochemical Eng. Asp. 320 (1), 175182.
[4]Boomer, D. R., McCune, C. C. & Fogler, H. S. (1972) Rotating disk apparatus for reaction rate studies in corrosive liquid environments. Rev. Sci. Instrum. 43 (2), 225229.
[5]Brady, J. F. & Durlofsky, L. (1987) On rotating disk flow. J. Fluid Mech. 175 (1), 363394.
[6]Davies, C. W. (1962) Ion Association, Vol. 30, Butterworths, London.
[7]Escudier, M. P. (1984) Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2 (4), 189196.
[8]Fredd, C. N. & Fogler, H. S. (1998) The kinetics of calcite dissolution in acetic acid solutions. Chem. Eng. Sci. 53 (22), 38633874.
[9]Harned, H. S. & Hamer, W. J. (1933) The ionization constant of water and the dissociation of water in potassium chloride solutions from electromotive forces of cells without liquid junction. J. Am. Chem. Soc. 55 (6), 21942206.
[10]Hyun, J. M. & Kim, J. W. (1987) Flow driven by a shrouded spinning disk with axial suction and radial inflow. Fluid Dyn. Res. 2 (3), 175182.
[11]Kaufmann, G. & Dreybrodt, W. (2007) Calcite dissolution kinetics in the system CaCO3-H2O-CO2 at high undersaturation. Geochim. Cosmochim. Acta 71 (6), 13981410.
[12]Kern, D. M. (1960) The hydration of carbon dioxide. J. Chem. Educ. 37 (1), 14.
[13]Keslin, J. (1978) Viscosity of liquid water in the range −8 °C to 150 °C. J. Phys. Chem. Ref. Data 7 (3), 941948.
[14]Lasaga, A. (1998) Kinetic Theory in the Earth Sciences, Princeton, New Jersey, Princeton University Press.
[15]Lehmkuhl, G. D. & Hudson, J. L. (1971) Flow and mass transfer near an enclosed rotating disk: Experiment. Chem. Eng. Sci. 26 (10), 16011613.
[16]Lehto, P., Aaltonen, J., Niemelä, P., Rantanen, J., Hirvonen, J., Tanninen, V. P. & Peltonen, L. (2008) Simultaneous measurement of liquid-phase and solid-phase transformation kinetics in rotating disc and channel flow cell dissolution devices. Int. J. Pharmaceutics 363 (1–2), 6672.
[17]Levich, V. G. & Spalding, D. B. (1962) Physicochemical Hydrodynamics, Vol. 689, Prentice-Hall, Englewood Cliffs, NJ.
[18]Lewis, G. N. & Randall, M. (1961) Thermodynamics, revised by Pitzer, K.S. & Brewer, L., McGraw-Hill, New York.
[19]Lingwood, R. J. (1995) Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 1717.
[20]Lingwood, R. J. (1996) An experimental study of absolute instability of the rotating-disk boundary-layer flow. J. Fluid Mech. 314 (1), 373405.
[21]Lund, K., Fogler, H. S. & McCune, C. C. (1973) Acidization–I. The dissolution of dolomite in hydrochloric acid. Chem. Eng. Sci. 28 (3), 691700.
[22]Lund, K., Fogler, H. S., McCune, C. C. & Ault, J. W. (1975) Acidization–II. The dissolution of calcite in hydrochloric acid. Chem. Eng. Sci. 30 (8), 825835.
[23]Miklavčič, M. & Wang, C. Y. (2004) The flow due to a rough rotating disk. Z. für Angew. Math. Phys. (ZAMP) 55 (2), 235246.
[24]Mitchell, M. J., Jensen, O. E., Cliffe, K. A. & Maroto-Valer, M. M. (2010) A model of carbon dioxide dissolution and mineral carbonation kinetics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466 (2117), 12651290.
[25]Morse, J. W., Arvidson, R. S. & Lüttge, A. (2007) Calcium carbonate formation & dissolution. Chem. Rev. 107 (2), 342381.
[26]Ockendon, H. (1972) An asymptotic solution for steady flow above an infinite rotating disc with suction. Q. J. Mech. Appl. Math. 25 (3), 291301.
[27]Patnaik, P. (2003) Handbook of Inorganic Chemicals, Vol. 28, McGraw-Hill, New York.
[28]Pitzer, K. S. (1981) Characteristics of very concentrated aqueous solutions. Phys. Chem. Earth 13, 249272.
[29]Plummer, L. N. & Busenberg, E. (1982) The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 46 (6), 10111040.
[30]Prakongpan, S., Higuchi, W. I., Kwan, K. H. & Molokhia, A. M. (1976) Dissolution rate studies of cholesterol monohydrate in bile acid–lecithin solutions using the rotating-disk method. J. Pharmaceutical Sci. 65 (5), 685689.
[31]Stewartson, K. (1953) On the flow between two rotating coaxial disks. Proc. Camb. Philos. Soc. 49 (2), 333341.
[32]Taylor, K. & Nasr-El-Din, H. A. (2009) Measurement of acid reaction rates with the rotating disk apparatus. J. Can. Pet. Technol. 48 (6), 6670.
[33]Tomlan, P. F. & Hudson, J. L. (1971) Flow near an enclosed rotating disk: Analysis. Chem. Eng. Sci. 26 (10), 15911600.
[34]Usdowski, E. (1982) Reactions and equilibria in the systems CO2-H2O and CaCO3-CO2-H2O (0–50°C). Neues Jahrbuch für Mineralogie. Abhandlungen 144 (2), 148171.
[35]Yuan-Hui, L. & Gregory, S. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38 (5), 703714.
[36]Zandbergen, P. J. & Dijkstra, D. (1987) Von Káán swirling flows. Annu. Rev. Fluid Mech. 19 (1), 465491.
[37]Zeebe, R. E. (2011) On the molecular diffusion coefficients of dissolved CO2, HCO3, and CO32− and their dependence on isotopic mass. Geochim. Cosmochim. Acta 75, 24832498.

Keywords

A Stefan model for mass transfer in a rotating disk reaction vessel

  • C. S. BOHUN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed