[1] Abramowitz, M. & Stegun, I. (1965) Handbook of Mathematical Functions, 9th ed., Dover Publications, New York, NY.
[2] Astrov, Y. A. & Purwins, H. G. (2006) Spontaneous division of dissipative solitons in a planar gas-discharge system with high ohmic electrode. Phys. Lett. A 358 (5–6), 404–408.
[3] Avitabile, D., Brena-Medina, V. & Ward, M. J. (2018) Spot dynamics in a reaction-diffusion model of plant root hair initiation. SIAM J. Appl. Math. 78 (1), 291–319.
[4] Beylkin, G., Kurcz, C. & Monzón, L. (2008) Fast algorithms for Helmholtz Green's functions. Proc. Roy. Soc. A 464 (2100), 3301–3326.
[5] Callahan, T. K. & Knobloch, E. (1997) Symmetry-breaking bifurcations on cubic lattices. Nonlinearity 10 (5), 1179–1216.
[6] Callahan, T. K. & Knobloch, E. (2001) Long-wavelength instabilities of three dimensional patterns. Phys. Rev. E. 64 (3), 036214.
[7] Chen, W. & Ward, M. J. (2011) The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott model. SIAM J. Appl. Dyn. Sys. 10 (2), 582–666.
[8] Davis, P. W., Blanchedeau, P., Dullos, E. & De Kepper, P. (1998) Dividing blobs, chemical flowers, and patterned islands in a reaction–diffusion system. J. Phys. Chem. A 102 (43), 8236–8244.
[10] Iron, D., Ward, M. J. & Wei, J. (2001) The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Physica D 150 (1–2), 25–62.
[11] Iron, D., Rumsey, J., Ward, M. J. & Wei, J. (2014) Logarithmic expansions and the stability of periodic patterns of localized spots for reaction–diffusion systems. J. Nonlinear Sci. 24 (5), 857–912.
[12] Kolokolnikov, T., Ward, M. J. & Wei, J. (2009) Spot self-replication and dynamics for the Schnakenberg model in a two-dimensional domain. J. Nonlinear Sci. 19 (1), 1–56.
[13] Kolokolnikov, T., Titcombe, M. & Ward, M. J. (2005) Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Eur. J. Appl. Math. 16 (2), 161–200.
[14] Kolokonikov, T., Ward, M. J. & Wei, J. (2014) The stability of hot-spot patterns for a reaction–diffusion system of urban crime. DCDS-B 19 (5), 1373–1410.
[15] Knobloch, E. (2015) Spatial localization in dissipative systems. Ann. Rev. Cond. Mat. Phys. 6, 325–359.
[16] Kropinski, M. C. & Quaife, B. D. (2011) Fast integral equation methods for the modified Helmholtz equation. J. Comp. Phys. 230 (2), 425–434.
[17] Lee, K. J., McCormick, W. D., Pearson, J. E. & Swinney, H. L. (1994) Experimental observation of self-replicating spots in a reaction–diffusion system. Nature 369, 215–218.
[18] Muratov, C. & Osipov, V. V. (2001) Spike autosolitons and pattern formation scenarios in the two-dimensional Gray–Scott model. Eur. Phys. J. B 22 (2), 213–221.
[19] Muratov, C. & Osipov, V. V. (2002) Stability of static spike autosolitons in the Gray–Scott model. SIAM J. Appl. Math. 62 (5), 1463–1487.
[20] Nishiura, Y. (2002) Far-From Equilibrium Dynamics, Translations of Mathematical Monographs, Vol. 209, AMS Publications, Providence, Rhode Island.
[21] Pearson, J. E. (1993) Complex patterns in a simple system. Science 216, 189–192.
[22] Prigogine, I. & Lefever, R. (1968) Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695.
[23] Rozada, I., Ruuth, S. & Ward, M. J. (2014) The stability of localized spot patterns for the Brusselator on the sphere. SIAM J. Appl. Dyn. Sys. 13 (1), 564–627.
[24] Sewalt, L. & Doelman, A. (2017) Spatially periodic multi-pulse patterns in a generalized Klausmeier–Gray–Scott model. SIAM J. Appl. Dyn. Sys. 16 (2), 1113–1163.
[25] Trinh, P. & Ward, M. J. (2016) The dynamics of localized spot patterns for reaction–diffusion systems on the sphere. Nonlinearity 29 (3), 766–806.
[26] Tzou, J., Xie, S., Kolokolnikov, T. & Ward, M. J. (2017) The stability and slow dynamics of localized spot patterns for the 3-D Schnakenberg reaction–diffusion model. SIAM J. Appl. Dyn. Sys. 16 (1), 294–336.
[27] Tzou, J. & Ward, M. J. (2018) The stability and slow dynamics of spot patterns in the 2D Brusselator model: The effect of open systems and heterogeneities. Physica D 373 (15 June 2018), 13–37.
[28] Tzou, J., Ward, M. J. & Wei, J. (2017) Anomalous scaling of Hopf bifurcation thresholds for the stability of localized spot patterns for reaction–diffusion systems in 2-D. SIAM J. Appl. Dyn. Sys. 17 (1), 982–1022.
[29] Turing, A. (1952) The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B 327, 37–72.
[30] Vanag, V. K. & Epstein, I. R. (2007) Localized patterns in reaction–diffusion systems. Chaos 17 (3), 037110.
[31] Ward, M. J. (2018) Spots, traps, and patches: Asymptotic analysis of localized solutions to some linear and nonlinear diffusive systems, invited survey article. Nonlinearity 31 (8), R189.
[32] Ward, M. J. & Wei, J. (2003) Hopf bifurcation and oscillatory instabilities of spike solutions for the one-dimensional Gierer–Meinhardt model. J. Nonlinear Sci. 13 (2), 209–264.
[33] Wei, J. & Winter, M. (2001) Spikes for the two-dimensional Gierer–Meinhardt system: The weak coupling case. J. Nonlinear Sci. 11 (6), 415–458.
[34] Wei, J. & Winter, M. (2003) Existence and stability of multiple spot solutions for the Gray–Scott model in $\mathbb{R}^2$. Physica D 176 (3–4), 147–180. [35] Wei, J. & Winter, M. (2008) Stationary multiple spots for reaction–diffusion systems. J. Math. Biol. 57 (1), 53–89.
[36] Wei, J., (2008) Existence and stability of spikes for the Gierer–Meinhardt system. In: Chipot, M. (editor), Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Elsevier, Amsterdam, pp. 489–581.
[37] Wei, J. & Winter, M. (2014) Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Science Series, Vol. 189, Springer, London, Heidelberg, New York, Dordrecht.
[38] Xie, S. & Kolokolnikov, T. (2017) Moving and jumping spot in a two dimensional reaction–diffusion model. Nonlinearity 30 (4), 1536–1563.