Skip to main content Accessibility help

Point-process models of social network interactions: Parameter estimation and missing data recovery



Electronic communications, as well as other categories of interactions within social networks, exhibit bursts of activity localised in time. We adopt a self-exciting Hawkes process model for this behaviour. First we investigate parameter estimation of such processes and find that, in the parameter regime we encounter, the choice of triggering function is not as important as getting the correct parameters once a choice is made. Then we present a relaxed maximum likelihood method for filling in missing data in records of communications in social networks. Our optimisation algorithm adapts a recent curvilinear search method to handle inequality constraints and a non-vanishing derivative. Finally we demonstrate the method using a data set composed of email records from a social network based at the United States Military Academy. The method performs differently on this data and data from simulations, but the performance degrades only slightly as more information is removed. The ability to fill in large blocks of missing social network data has implications for security, surveillance, and privacy.



Hide All
[1]Barabási, A.-L. (2005) The origin of bursts and heavy tails in human dynamics. Nature 435, 207–11.
[2]Candès, E. J., Romberg, J. K. & Tao, T. (2006) Stable signal recovery from incomplete and inaccurate measurements. Commu. Pure Appl. Math. 59, 1207–23.
[3]Chambolle, A., Caselles, V., Cremers, D., Novaga, M. & Pock, T. (2010) An introduction to total variation for image analysis. In: Fornasier, M. (editor), Theoretical Foundations and Numerical Methods for Sparse Recovery. De Gruyter, Berlin, pp. 263340.
[4]Chan, T. F. & Shen, J. (2005) Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia.
[5]Cho, Y. S., Galstyan, A., Brantingham, P. J. & Tita, G. (2014) Latent self-exciting point process model for spatial-temporal networks. Discrete Continuous Dyn. Syst. B 19, 1335–54.
[6]Crane, R. & Sornette, D. (2008) Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. 105, 15649–53.
[7]Csermely, P., London, A., Wu, L.-Y. & Uzzi, B. (2013) Structure and dynamics of core/periphery networks. J. Complex Netw. 1, 93123.
[8]Donoho, D. L. (2006) Compressed sensing. IEEE Trans. Inform. Theory 52, 12891306.
[9]Donoho, D. L. & Tanner, J. (2005) Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102, 9446–51.
[10]Egesdal, M., Fathauer, C., Louie, K., Neuman, J., Mohler, G. & Lewis, E. (2010) Statistical modeling of gang violence in Los Angeles. SIAM Undergrad. Res.
[11]Fox, E. W., Short, M. B., Schoenberg, F. P., Coronges, K. D. & Bertozzi, A. L. Modeling e-mail networks and inferring leadership using self-exciting point processes. Submitted to J. Am. Stat. Assoc.
[12]Goldfarb, D., Wen, Z. & Yin, W. (2009) A curvilinear search method for p-harmonic flows on spheres. SIAM J. Imaging Sci. 2, 84109.
[13]Hawkes, A. G. (1971) Spectra of self-exciting and mutually exciting point processes. Biometrika 58, 8390.
[14]Hawkes, A. G. (1971) Point spectra of some mutually exciting point processes. J. R. Stat. Soc. B 33, 438–43.
[15]Hegemann, R. A., Lewis, E. A. & Bertozzi, A. L. (2013) An “Estimate & Score Algorithm” for simultaneous parameter estimation and reconstruction of incomplete data on social networks. Secur. Inform. 2, 1.
[16]Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F. & Van den Broeck, W. (2011) What's in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–80.
[17]Lee, N. H., Yoder, J., Tang, M. & Priebe, C. E. (2013) On latent position inference from doubly stochastic messaging activities. Multiscale Model. Simul. 11, 683718.
[18]Lewis, E. & Mohler, G. A nonparametric EM algorithm for multiscale Hawkes processes. Preprint.
[19]Lewis, E., Mohler, G., Brantingham, P. J. & Bertozzi, A. (2010) Self-exciting point process models of insurgency in Iraq. UCLA CAM Report 10–38.
[20]Lewis, P. A. W. & Shedler, G. S. (1979) Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Q. 26, 403–13.
[21]Marsan, D. & Lengliné, O. (2008) Extending earthquakes' reach through cascading. Science 319, 1076–79.
[22]Masuda, N., Takaguchi, T., Sato, N. & Yano, K. (2013) Self-exciting point process modeling of conversation event sequences. In: Holme, P. & Saramäki, J. (editors), Temporal Networks, Springer–Verlag, Berlin, pp. 245–64.
[23]McLachlan, G. J. & Krishnan, T. (2008) The EM Algorithm and Extensions, 2nd ed.Wiley, Hoboken, New Jersey.
[24]Miritello, G., Moro, E. & Lara, R. (2011) Dynamical strength of social ties in information spreading. Phys. Rev. E 83, 045102(R).
[25]Mohler, G. (2013) Modeling and estimation of multi-source clustering in crime and security data. Ann. Appl. Stat. 7, 1525–39.
[26]Ogata, Y. (1981) On Lewis' simulation method for point processes. IEEE Trans. Inform. Theory 27, 2331.
[27]Ogata, Y. (1998) Space-time point process models for earthquake occurrences. Ann. Inst. Stat. Math. 50, 379402.
[28]Ogata, Y. (1999) Seismicity analysis through point-process modeling: A review. Pure Appl. Geophys. 155, 471501.
[29]Ozaki, T. (1979) Maximum likelihood estimation of Hawkes' self-exciting point processes. Ann. Inst. Stat. Math. 31, 145–55.
[30]Paxson, V. & Floyd, S. (1995) Wide area traffic: The failure of Poisson modeling. IEEE/ACM Trans. Netw. 3, 226–44.
[31]Rubin, I. (1972) Regular point processes and their detection. IEEE Trans. Inform. Theory 18, 547–57.
[32]Rudin, L. I., Osher, S. & Fatemi, E. (1992) Nonlinear total variation based noise removal algorithms. Physica D 60, 259–68.
[33]Rybski, D., Buldyrev, S. V., Havlin, S., Liljeros, F. & Makse, H. A. (2009) Scaling laws of human interaction activity. Proc. Natl. Acad. Sci. 106, 12640–45.
[34]Stomakhin, A., Short, M. B. & Bertozzi, A. L. (2011) Reconstruction of missing data in social networks based on temporal patterns of interactions. Inverse Problems 27, 115013.
[35]Vázquez, A., Oliveira, J. G., Dezsö, Z., Goh, K.-I., Kondor, I. & Barabási, A.-L. (2006) Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73, 036127.
[36]Veen, A. & Schoenberg, F. P. (2008) Estimation of space–time branching process models in seismology using an EM-type algorithm. J. Am. Stat. Assoc. 103, 614–24.
[37]Vese, L. A. & Osher, S. J. (2002) Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40, 20852104.
[38]Wen, Z. & Yin, W. (2013) A feasible method for optimization with orthogonality constraints. Math. Program. A 142, 397434.
[39]Wu, C. F. J. (1983) On the convergence properties of the EM algorithm. Ann. Stat. 11, 95103.


Point-process models of social network interactions: Parameter estimation and missing data recovery



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed