Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T04:46:33.928Z Has data issue: false hasContentIssue false

Periodic pulsating dynamics of slow–fast delayed systems with a period close to the delay

Published online by Cambridge University Press:  22 December 2017

P. KRAVETC
Affiliation:
Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA email: pxk142530@utdallas.edu, dmitry.rachinskiy@utdallas.edu
D. RACHINSKII
Affiliation:
Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA email: pxk142530@utdallas.edu, dmitry.rachinskiy@utdallas.edu
A. VLADIMIROV
Affiliation:
Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany email: vladimir@wias-berlin.de Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Abstract

We consider slow–fast delayed systems and discuss pulsating periodic solutions, which are characterised by specific properties that (a) the period of the periodic solution is close to the delay, and (b) these solutions are formed close to a bifurcation threshold. Such solutions were previously found in models of mode-locked lasers. Through a case study of population models, this work demonstrates the existence of similar solutions for a rather wide class of delayed systems. The periodic dynamics originates from the Hopf bifurcation on the positive equilibrium. We show that the continuous transformation of the periodic orbit to the pulsating regime is simultaneous with multiple secondary almost resonant Hopf bifurcations, which the equilibrium undergoes over a short interval of parameter values. We derive asymptotic approximations for the pulsating periodic solution and consider scaling of the solution and its period with the small parameter that measures the ratio of the time scales. The role of competition for the realisation of the bifurcation scenario is highlighted.

Type
Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

P.K. and D.R. acknowledge the support of NSF through Grant DMS-1413223.

References

[1] Arkhipov, R., Pimenov, A., Radziunas, M., Rachinskii, D., Vladimirov, A. G., Arsenijevic, D., Schmeckebier, H. & Bimberg, D. (2013) Hybrid mode-locking in semiconductor lasers: Simulations, analysis and experiments. IEEE J. Sel. Top. Quantum Electron. 19, 1100208.Google Scholar
[2] Arkhipov, R. M., Amann, A. & Vladimirov, A. G. (2015) Pulse repetition-frequency multiplication in a coupled cavity passively mode-locked semiconductor lasers. J. Appl. Phys. B: 118, 539548.Google Scholar
[3] Arkhipov, R. M., Habruseva, T., Pimenov, A., Radziunas, M., Huyet, G. & Vladimirov, A. G. (2016) Semiconductor mode-locked lasers with coherent dual mode optical injection: Simulations, analysis and experiment. J. Opt. Soc. Am. B 33, 351359.Google Scholar
[4] Banerjee, S., Mukhopadhyay, B. & Bhattacharyya, R. (2010) Effect of maturation and gestation delays in a stage structure predator prey model. J. Appl. Math. Inform. 28 (5–6), 13791393.Google Scholar
[5] Carr, T. W., Haberman, R. & Erneux, T. (2012) Delay-periodic solutions and their stability using averaging in delay-differential equations, with applications. Phys. D: Nonlinear Phenom. 241 (18), 15271531.Google Scholar
[6] Carr, T. W., Schwartz, I. B., Kim, M. Y. & Roy, R. (2006) Delayed-mutual coupling dynamics of lasers: Scaling laws and resonances. SIAM J. Dyn. Syst. 5, 699725.Google Scholar
[7] Delfyett, P. J., Gee, S., Choi, M.-T., Izadpanah, H., Lee, W., Ozharar, S., Quinlan, F. & Yilmaz, T. (2006) Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J. Lightwave Technol. 24 (7), 27012719.Google Scholar
[8] Erneux, T. (2009) Applied Delay Differential Equations, Springer, Springer-Verlag, New York.Google Scholar
[9] Erneux, T. & Mandel, P. (1995) Minimal equations for antiphase dynamics in multimode lasers. Phys. Rev. A 52, 41374144.Google Scholar
[10] Fiedler, B., Flunkert, V., Hövel, P. & Schöll, E. (2010) Delay stabilization of periodic orbits in coupled oscillator systems. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 368, 319341.Google Scholar
[11] Fowler, A. C. (1982) An asymptotic analysis of the delayed logistic equation when the delay is large. IMA J. Appl. Math. 28, 4149.Google Scholar
[12] Fowler, A. C. (2005) Asymptotic methods for delay equations. J. Eng. Math. 53, 271290.Google Scholar
[13] Gourley, S. A. & Kuang, Y. (2004) A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol. 49 (2), 188200.Google Scholar
[14] Grigorieva, E. V. & Kashchenko, S. A. (1993) Complex temporal structures in models of a laser with optoelectronic delayed feedback. Opt. Commun. 102, 183192.Google Scholar
[15] Habruseva, T., Hegarty, S. P., Vladimirov, A. G., Pimenov, A., Rachinskii, D., Rebrova, N., Viktorov, E. A. & Huyet, G. (2010) Bistable regimes in an optically injected mode-locked laser. Opt. Express 20, 2557225583.Google Scholar
[16] Haus, H. (1975) Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11 (9), 736746.Google Scholar
[17] Haus, H. A. (2000) Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6 (6), 11731185.Google Scholar
[18] Hooton, E. W. & Amann, A. (2012) Analytical limitation for time-delayed feedback control in autonomous systems. Phys. Rev. Lett. 109 (15), 154101.Google Scholar
[19] Jaurigue, L., Pimenov, A., Rachinskii, D., Schöll, E., Lüdge, K. & Vladimirov, A. G. (2015) Timing jitter of passively mode-locked semiconductor lasers subject to optical feedback: A semi-analytic approach. Phys. Rev. A 92, 053807.Google Scholar
[20] Jiang, L. A., Ippen, E. P. & Yokoyama, H. (2007) Ultrahigh-Speed Optical Transmission Technology, Springer, Springer-Verlag Berlin, Heidelberg.Google Scholar
[21] Kaiser, R. & Hüttl, B. (2007) Monolithic 40-ghz mode-locked mqw dbr lasers for high-speed optical communication systems. IEEE J. Sel. Top. Quantum Electron. 13 (1), 125135.Google Scholar
[22] Kevorkian, J. & Cole, J. D. (1980) Perturbation Methods in Applied Mathematics, Springer, Springer-Verlag, New York.Google Scholar
[23] Kuramoto, M., Kitajima, N., Guo, H., Furushima, Y., Ikeda, M. & Yokoyama, H. (2007) Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source. Opt. Lett. 32 (18), 27262728.Google Scholar
[24] Lichtner, M., Wolfrum, M. & Yanchuk, S. (2011) The spectrum of delay differential equations with large delay. SIAM J. Math. Anal. 43 (2), 788802.Google Scholar
[25] May, R. M. & Anderson, R. M. (1978) Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J. Anim. Ecol. 47 (1), 249267.Google Scholar
[26] Mitchell, J. L. & Carr, T. W. (2010) Oscillations in an intrahost model of plasmodium falciparum malaria due to cross-reactive immune response. Bull. Math. Biol. 72, 590610.Google Scholar
[27] New, G. H. C. (1974) Pulse evolution in mode-locked quasi-continuous lasers. IEEE J. Quantum Electron. 10 (2), 115124.Google Scholar
[28] Nizette, M., Rachinskii, D., Vladimirov, A. & Wolfrum, M. (2006) Pulse interaction via gain and loss dynamics in passive mode locking. Phys. D: Nonlinear Phenom. 218 (1), 95104.Google Scholar
[29] Pieroux, D. & Erneux, T. (1996) Strongly pulsating lasers with delay. Phys. Rev. A 53, 27652771.Google Scholar
[30] Pieroux, D., Erneux, T. & Otsuka, K. (1994) Minimal model of a class-B laser with delayed feedback: Cascading branching of periodic solutions and period-doubling bifurcation. Phys. Rev. E 50, 18221829.Google Scholar
[31] Pimenov, A., Habruseva, T., Rachinskii, D., Hegarty, S. P., Guillaume, H. & Vladimirov, A. G. (2014) Effect of dynamical instability on timing jitter in passively mode-locked quantum-dot lasers. Opt. Lett. 39, 68156818.Google Scholar
[32] Pimenov, A., Viktorov, E. A., Hegarty, S. P., Habruseva, T., Huyet, G. & Vladimirov, A. G. (2014) Bistability and hysteresis in an optically injected two-section semiconductor laser. Phys. Rev. E 89, 052903.Google Scholar
[33] Puzyrev, D., Vladimirov, A. G., Gurevich, S. V. & Yanchuk, S. (2016) Modulational instability and zigzagging of dissipative solitons induced by delayed feedback. Phys. Rev. A 93, 041801(R).Google Scholar
[34] Pyragas, K. (1992) Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421428.Google Scholar
[35] Rachinskii, D., Vladimirov, A., Bandelow, U., Hüttl, B. & Kaiser, R. (2006) Q-switching instability in a mode-locked semiconductor laser. JOSA B 23 (4), 663670.Google Scholar
[36] Ruan, S. (2009) On nonlinear dynamics of predator-prey models with discrete delay. Math. Model. Nat. Phenom. 4 (02), 140188.Google Scholar
[37] Schwartz, I. B. & Smith, H. L. (1983) Infinite subharmonic bifurcation in an SEIR epidemic model. J. Math. Biol. 18, 233253.Google Scholar
[38] Taylor, M. L. & Carr, T. W. (2009) An sir epidemic model with partial temporary immunity modeled with delay. J. Math. Biol. 59, 841880.Google Scholar
[39] Tuckerman, L. S. & Barkley, D. (1990) Bifurcation analysis of the Eckhaus instability. Physica D 46, 5786.Google Scholar
[40] Vladimirov, A. G., Rachinskii, D. & Wolfrum, M. (2012) Modeling of passively mode-locked semiconductor lasers. In: Lüdge, K. (editor), Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, chapter VIII, John Wiley & Sons, Wiley-VCH Verlag GmbH & Co. KGaA. pp. 189222.Google Scholar
[41] Vladimirov, A. G. & Turaev, D. (2005) Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72 (3), 033808.Google Scholar
[42] Vladimirov, A. G., Turaev, D. & Kozyreff, G. (2004) Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29 (11), 12211223.Google Scholar
[43] Vladimirov, A. G. & Turaev, D. V. (2004) A new model for a mode-locked semiconductor laser. Radiophys. Quantum Electron. 47 (10–11), 769776.Google Scholar
[44] Vladimirov, A. G., Wolfrum, M., Fiol, G., Arsenijevic, D., Bimberg, D., Viktorov, E., Mandel, P. & Rachinskii, D. (2010) Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser. In: SPIE Photonics Europe, International Society for Optics and Photonics, pp. 77200Y–77200Y.Google Scholar
[45] Xu, R., Chaplain, M. A. J. & Davidson, F. A. (2004) Persistence and stability of a stage-structured predator-prey model with time delays. Appl. Math. Comput. 150, 259277.Google Scholar
[46] Yanchuk, S. & Wolfrum, M. (2006) Eckhaus instability in systems with large delay. Phys. Rev. Lett. 6, 220201.Google Scholar
[47] Yanchuk, S. & Wolfrum, M. (2010) A multiple time scale approach to the stability of external cavity modes in the Lang-Kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Syst. 9 (2), 519535.Google Scholar