Skip to main content Accessibility help
×
Home

Nilpotent centres via inverse integrating factors

  • ANTONIO ALGABA (a1), CRISTÓBAL GARCÍA (a1) and JAUME GINÉ (a2)

Abstract

In this paper, we are interested in the nilpotent centre problem of planar analytic monodromic vector fields. It is known that the formal integrability is not enough to characterize such centres. More general objects are considered as the formal inverse integrating factors. However, the existence of a formal inverse integrating factor is not sufficient to describe all the nilpotent centres. For the family studied in this paper, it is enough.

Copyright

References

Hide All
[1] Algaba, A., Checa, I., García, C. & Gamero, E. (2015) On orbital-reversibility for a class of planar dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 20 (1), 229239.
[2] Algaba, A., Fuentes, N., García, C. & Reyes, M. (2014) A class of non-integrable systems admitting an inverse integrating factor. J. Math. Anal. Appl. 420 (2), 14391454.
[3] Algaba, A., Gamero, E. & García, C. (2009) The integrability problem for a class of planar systems. Nonlinearity 22 (2), 395420.
[4] Algaba, A., García, C. & Reyes, M. (2008) The center problem for a family of systems of differential equations having a nilpotent singular point. J. Math. Anal. Appl. 340 (1), 3243.
[5] Algaba, A., García, C. & Reyes, M. (2009) Like-linearizations of vector fields. Bull. Sci. Math. 133 (8), 806816.
[6] Algaba, A., García, C. & Reyes, M. (2012) A note on analytic integrability of planar vector fields. Eur. J. Appl. Math. 23 (5), 555562.
[7] Algaba, A., García, C. & Reyes, M. (2012) Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems. Chaos Solitons Fractals 45 (6), 869878.
[8] Algaba, A., García, C. & Reyes, M. (2014) A new algorithm for determining the monodromy of a planar differential system. Appl. Math. Comput. 237, 419429.
[9] Álvarez, M. J. & Gasull, A. (2005) Monodromy and stability for nilpotent critical points. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (4), 12531265.
[10] Álvarez, M. J. & Gasull, A. (2006) Generating limit cycles from a nilpotent critical points via normal forms. J. Math. Anal. Appl. 318 (1), 271287.
[11] Andreev, A. F. (1953) Solution of the problem of the center and the focus in one case. (Russian) Akad. Nauk SSSR. Prikl. Mat. Meh. 17, 333338.
[12] Berthier, M. & Moussu, R. (1994) Réversibilité et classification des centres nilpotents. Ann. Inst. Fourier (Grenoble) 44, 465494.
[13] García, I. A. (2016) Formal inverse integrating factors and nilpotent centers. J. Bifur. Chaos Appl. Sci. Engrg. 26 (1), 1650015 (13 pages).
[14] García, I. A., Giacomini, H., Giné, J. & LLibre, J. (2015) Analytic nilpotent centers as limit of nondegenerate centers revisited, preprint.
[15] Gasull, A. & Torregrosa, J. (1998) Centers problem for several differential equations via Cherkas' method. J. Math. Anal. Appl. 228 (2), 322343.
[16] Giacomini, H., Giné, J. & Llibre, J. (2006) The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Differ. Equ. 227 (2), 406426; J. Differ. Equ. 232(2007), 702 (Corrigendum).
[17] Giné, J. (2006) The nondegenerate center problem and the inverse integrating factor. Bull. Sci. Math. 130 (2), 152161.
[18] Giné, J. & Llibre, J. (2014) A method for characterizing nilpotent centers. J. Math. Anal. Appl. 413 (1), 537545.
[19] Giné, J. & Peralta-Salas, D. (2012) Existence of inverse integrating factors and Lie symmetries for degenerate planar centers. J. Differ. Equ. 252 (1), 344357.
[20] Liu, Y. & Li, J. (2009) New study on the center problem and bifurcation of limit cycles for the Lyapunov system (I). Internat. J. Bifur. Chaos 19 (11), 37913801.
[21] Liu, Y. & Li, J. (2009) New study on the center problem and bifurcation of limit cycles for the Lyapunov system (II). Internat. J. Bifur. Chaos 19 (9), 30873099.
[22] Marsden, J. E. & Ratiu, T. S. (1994) Introduction to Mechanics and Symmetry. A basic exposition of classical mechanical systems. Texts in Applied Mathematics, 17. Springer-Verlag, New York, xvi+500 pp.
[23] Moussu, R. (1982) Symétrie et forme normale des centres et foyers dégénérés. Ergodic Theory Dyn. Syst. 2 (2), 241251.
[24] Reeb, G. (1952) Sur certaines propriétés topologiques des variétés feuilletées (French) Publ. Inst. Math. Univ. Strasbourg 11, pp. 589, 155–156. Actualités Sci. Ind., no. 1183 Hermann & Cie., Paris.

Keywords

Nilpotent centres via inverse integrating factors

  • ANTONIO ALGABA (a1), CRISTÓBAL GARCÍA (a1) and JAUME GINÉ (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed