[1]
Craya, A. (1949) Theoretical research on the flow of nonhomogeneous fluids.
La Houille Blanche
4, 44–55.

[2]
Forbes, L. K. (1985) On the effects of non-linearity in free-surface flow about a submerged point vortex.
J. Eng. Math.
19, 139–155.

[3]
Forbes, L. K. & Hocking, G. C. (1993) Flow induced by a line sink in a quiescent fluid with surface tension effects.
J. Austral. Math. Soc. Ser. B
34, 377–391.

[4]
Gariel, P. (1949) Experimental research on the flow of nonhomogeneous fluids.
La Houille Blanche
4, 56–65.

[5]
Harleman, D. R. F. & Elder, R. E. (1965) Withdrawal from two-layer stratified flow. J. Hydraul. Div. ASCE
91, HY4, 43–58.

[6]
Hocking, G. C. (1991) Withdrawal from two-layer fluid through line sink.
J. Hydraul. Engng ASCE
117, 800–805.

[7]
Hocking, G. C. & Forbes, L. K. (1991) A note on the flow induced by a line sink beneath a free surface.
J. Austral. Math. Soc. Ser. B
32, 251–260.

[8]
Hocking, G. C. & Forbes, L. K. (1992) Subcritical free-surface flow caused by a line source in a fluid of finite depth.
J. Eng. Math.
26, 455–466.

[9]
Hocking, G. C. & Forbes, L. K. (2000) Withdrawal from a fluid of finite depth through a line sink, including surface tension effects.
J. Eng. Math.
38, 91–100.

[10]
Hocking, G. C., Forbes, L. K. & Stokes, T. E. (2014) A note on steady flow into a submerged point sink. ANZIAM J.
56, 150–159.

[11]
Hocking, G. C., Stokes, T. E. & Forbes, L. K. (2010) A rational approximation to the evolution of a free surface during fluid withdrawal through a point sink. ANZIAM J.
51, E31–E36.

[12]
Hocking, G. C. & Vanden-Broeck, J.-M. (1998) Withdrawal of a fluid of finite depth through a line sink with a cusp in the free surface.
Comp. Fluids
27, 797–806.

[13]
Imberger, J. & Hamblin, P. F. (1982) Dynamics of lakes, reservoirs and cooling ponds.
Ann. Rev. Fluid Mech.
14, 153–187.

[14]
Jirka, G. H. (1979) Supercritical withdrawal from two-layered fluid systems, Part 1. Two-dimensional skimmer wall.
J. Hydraul. Res.
17, 53–62.

[15]
Lustri, C. J., McCue, S. W. & Chapman, S. J. (2013) Exponential asymptotics of free surface flow due to a line source.
IMA J. Appl. Math.
78, 697–713.

[16]
Mekias, H. & Vanden-Broeck, J.-M. (1991) Subcritical flow with a stagnation point due to a source beneath a free surface.
Phys. Fluids Ser. A
3, 2652–2658.

[17]
Peregrine, D. H. (1972) A line source beneath a free surface. *Mathematics Research Center Technical Summary Report*. University of Wisconsin Report, 1248.

[18]
Sautreaux, C. (1901) Mouvement d'un liquide parfait soumis à la pesanteur. Dé termination des lignes de courant.
J. Math. Pures. Appl.
7, 125–159.

[19]
Stokes, T. E., Hocking, G. C. & Forbes, L. K. (2003) Unsteady free surface flow induced by a line sink.
J. Eng. Math.
47, 137–160.

[20]
Stokes, T. E., Hocking, G. C. & Forbes, L. K. (2005) Unsteady flow induced by a withdrawal point beneath a free surface.
ANZIAM J.
47, 185–202.

[21]
Stokes, T. E., Hocking, G. C. & Forbes, L. K. (2008) Unsteady free surface flow induced by a line sink in a fluid of finite depth.
Comput. Fluids
37, 236–249.

[22]
Trinh, P. H. & Chapman, S. J. (2013) New gravity-capillary waves at low speeds. Part 1. Linear geometries.
J. Fluid Mech.
724, 367–391.

[23]
Trinh, P. H. & Chapman, S. J. (2013) New gravity-capillary waves at low speeds. Part 2. Nonlinear theory. J.
J. Fluid Mech.
724, 392–424.

[24]
Tuck, E. O. & Vanden-Broeck, J. M. (1984) A cusp-like free-surface flow due to a submerged source or sink.
J. Austral. Math. Soc. Ser. B
25, 443–450.

[25]
Vanden-Broeck, J. -M. (1996) Waves generated by a source below a free surface in water of finite depth.
J. Eng. Math.
30, 603–609.

[26]
Vanden-Broeck, J. -M. (1998) A model for the free surface flow due to a submerged source in water of infinite depth.
J. Austral. Math. Soc. Ser. B
39, 528–538.

[27]
Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. (1978) Divergent low-Froude-number series expansion of nonlinear free-surface flow problems.
Proc. R. Soc. Lond. A
361, 207–224.

[28]
Wehausen, J. V. & Laitone, E. V. (1960) Surface waves. In: Flügge, S. (editor), Handbuch der Physik, vol. 9, Springer, Berlin, pp. 446–778.

[29]
Wood, I. R. & Lai, K. K. (1972) Selective withdrawal from a two-layered fluid.
J. Hydraul. Res.
10, 475–496.

[30]
Xue, X. & Yue, D. K. P. (1998) Nonlinear free-surface flow due to an impulsively started submerged point sink.
J. Fluid Mech.
364, 325–347.