Skip to main content Accessibility help

Interface closure in the root region of steady deep-cellular growth in directional solidification

  • J.-J. XU (a1) (a2) and Y.-Q. CHEN (a3)


The present paper investigates the mechanism of interface closure in the root region of the solutions for steady deep-cellular growth. This phenomenon is determined by a transcendentally small factor beyond all orders. It is found that the root region comprises three inner-inner regions; the inner system in the root region has a simple turning point, whose presence generates the so-called trapped-waves mechanism, which is responsible for the interface closure at the bottom of root. The quantization condition derived from the trapped-waves mechanism yields the eigenvalue that determines the location of interface closure and its dependence on the interfacial energy and other physical parameters.



Hide All
[1]Rutter, J. W. & Chalmers, B. (1953) A prismatic substructure formed during solidification of metals. Can. J. Phys. 31, 1539.
[2]Mullins, W.W. & Sekerka, R. F. (1963) Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323329.
[3]Somboonsuk, K., Mason, J. T. & Trivedi, R. (1984) Interdendritc spacing: Part (I)-(II). Metall. Tran. A 15, 967975; 977–982.
[4]Pelce, P. & Pumir, A. (1985) Cell shape in directional solidification in the small Péclet number limit. J. Cryst. Growth 73, 337342.
[5]Weeks, J. D. & van-Saarloos, W. (1989) Directional solidification cells with grooves for a small partition coeffcient. Phy. Rev. A 39, 27722775.
[6]Ungar, L. H. & Brown, R. A. (1985), Cellular interface morphologies in directional solidification. 4. The formation of deep cells. Phys. Rev. B 31, 59315940.
[7]Georgelin, M. & Pocheau, A. (2006) Shape of Growth Cells in Directional Solidifiction, Phys. Rev. E, 73, 011604.
[8]Weeks, J. D., van-Saarloos, W. & Grant, M. (1991) Stability and shape of cellular profiles in directional solidification: Expansion and matching methods. J. Cryst. Growth. 112, 244282.
[9]Caroli, B., Caroli, C. & Roulet, B. (1991) Instability of planar solidification fronts. In: Godreche, C. (editor), Solids Far from Equilibrium, Cambridge University Press, Cambridge, New York, pp. 155296.
[10]Billia, B. & Trivedi, R. (1993) Pattern formation in crystal growth. In: Hurle, D. T. J. (editor), Handbook of Crystal Growth, Vol. 1: Fundamentals, Part B: Transport and Stability, Elsevier Science Publishers, Norh-Holland, Amsterdam, pp. 8721008.
[11]Chen, Y. Q. & Xu, J. J. (2011) Global theory of steady deep-cellular growth in directional solidification, Phys. Rev. E 83, 041601.
[12]Xu, J. J. & Chen, Y. Q. (2011) Global stabilities, selection of steady cellular growth, and origin of side branches in directional solidification. Phys. Rev. E 83, 061605
[13]Saffman, P. G. & Taylor, G. I. (1958) The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A. 245, 312329.
[14]Xu, J. J. (1991) Global instability of viscous fingering in Hele-Shaw Cell (I) – formation of oscillatory fingers Eur. J. Appl. Math. 2, 105132.
[15]Xu, J. J. (1996) Interfacial instabilities and fingering formation in Hele-Shaw Flow, IMA J. of Appl. Math. 57, 101135.
[16]Xu, J. J. (1996) Interfacial wave theory for oscillatory finger's formation in a Hele–Shaw cell: A comparison with experiments. Eur. J. Appl. Math. 7, 169199.
[17]Kruskal, M. & Segur, H. (1991) Asymptotics beyond all orders. Stud. Appl. Math. 85, 129181.
[18]Chapman, S. J. & Vanden-Broeck, J. M. (2002) Exponential Asymptotics and Capillary Waves. SIAM J. Appl. Math. 62, 18721898.
[19]Chapman, S. J. & Vanden-Broeck, J. M. (2006) Exponential asymptotics and gravity waves. J. Fluid Mech. 567, 299326.
[20]Berry, M. V. (1991) Asymptotics, superasymptotics, hyperasymptotics. In: Segur, H., Tanveer, S. & Levine, H. (editors), Asymptotics Beyond All Orders, NATO ASI Series. Vol. 284, Plenum, Amsterdam, pp. 114.
[21]Xu, J. J. (1998) Interfacial Wave Theory of Pattern Formation: Selection of Dendrite Growth and Viscous Fingering in a Hele–Shaw Flow, Springer-Verlag, Germany, Heidelberg.
[22]Georgelin, M. & Pocheau, A. (2006) Shape of growth cells in directional solidification. Phys. Rev. E 73, 011604.
[23]Xu, J. J. (1991) Interfacial wave theory of solidication–dendritic pattern formation and selection of tip velocity. Phys. Rev. A15, 43, 930947.
[24]Xu, J. J. (1996) Generalized needle solutions, interfacial instabilities and pattern formation. Phys. Rev. E 53, 50315062.
[25]Chen, Y. Q., Tang, X. X. & Xu, J. J. (2009) 3D Interfacial wave theory of dendritic growth: (I)-(II). Chin. Phys. B 18, 671–685; 686698.


Interface closure in the root region of steady deep-cellular growth in directional solidification

  • J.-J. XU (a1) (a2) and Y.-Q. CHEN (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed