Skip to main content Accessibility help
×
Home

Hopf bifurcation from spike solutions for the weak coupling Gierer–Meinhardt system

  • DANIEL GOMEZ (a1), LINFENG MEI (a2) and JUNCHENG WEI (a1)

Abstract

The Hopf bifurcation from spike solutions for the classical Gierer–Meinhardt system in a onedimensional interval is considered. The existence of time-periodic solution near the Hopf bifurcation parameter for a boundary spike is rigorously proved by the classical Crandall–Rabinowitz theory. The criteria for the stability of the limit cycle are determined, and it is shown that the limit cycle is unstable.

Copyright

Footnotes

Hide All

L. Mei is supported by the National Natural Science Foundation of China (11771125, 11371117). J. Wei is partially supported by NSERC of Canada. D. Gomez is supported by NSERC of Canada.

Footnotes

References

Hide All
[1]Crandall, M. G. & Rabinowitz, P. H. (1977) The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal. 67(1), 5372.
[2]Dancer, E. N. (2001) On stability and Hopf bifurcations for chemotaxis systems. Methods Appl. Anal. 8(2), 245256.
[3]Doelman, A., Gardner, R. A. & Kaper, T. J. (2001) Large stable pulse solutions in reaction-diffusion equations. Indiana Univ. Math. J. 50(1), 443507.
[4]Doelman, A., Kaper, T. J. & Promislow, K. (2007) Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer-Meinhardt model. SIAM J. Math. Anal. 38(6), 17601787.
[5]Doelman, A., Kaper, T. J. & van der Ploeg, H. (2001) Spatially periodic and aperiodic multi-pulse patterns in the one-dimensional Gierer-Meinhardt equation. Methods Appl. Anal. 8(3), 387414.
[6]Gierer, A. & Meinhardt, H. (1972) A theory of biological pattern formation. Kybernetik, Continued Biol. Cybern. 12(1), 3039.
[7]Gomez, D., Mei, L. & Wei, J. (2020) Stable and unstable periodic spiky solutions for the Gray-Scott system and the Schnakenberg system. J. Dyn. Diff. Equ. 32(1), 442481.
[8]Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations, Vol. 840, Lecture Notes in Mathematics. Springer-Verlag, Berlin, New York.
[9]Iron, D., Ward, M. J. & Wei, J. (2001) The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Phys. D 150(1–2), 2562.
[10]Kielhöfer, H. (2004) Bifurcation Theory: An Introduction with Applications to PDEs, Vol. 156. Applied Mathematical Sciences. Springer, New York, NY.
[11]Lin, C.-S. & Ni, W.-M. (1988) On the diffusion coefficient of a semilinear Neumann problem. In: Calculus of Variations and Partial Differential Equations (Trento, 1986), Vol. 1340. Search Results Featured snippet from the web Image result for Lecture Notes in Math link.springer.com Lecture Notes in Mathematics. Springer, Berlin, pp. 160174.
[12]Maini, P. K., Woolley, T. E., Gaffney, E. A. & Baker, R. E. (2016). Turing's theory of developmental pattern formation. In: The Once and Future Turing. Cambridge University Press, Cambridge, pp. 131143.
[13]Meinhardt, H. (1982). Models of Biological Pattern Formation. The Virtual Laboratory. Academic Press, London. With Contributions and Images by Prusinkiewicz, P. & Fowler, D. R. With 1 IBMPC floppy disk (3.5 inch; HD).
[14]Ni, W.-M. & Takagi, I. (1993) Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247281.
[15]Ni, W.-M., Takagi, I. & Yanagida, E. (2001). Stability of least energy patterns of the shadow system for an activator-inhibitor model. Japan J. Indust. Appl. Math. 18(2), 259272. Recent Topics in Mathematics Moving Toward Science and Engineering.
[16]Ruuth, S. J. (1995) Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34(2), 148176.
[17]Sun, W., Ward, M. J. & Russell, R. (2005) The slow dynamics of two-spike solutions for the Gray-Scott and Gierer-Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst. 4(4), 904953.
[18]Takagi, I. (1986) Point-condensation for a reaction-diffusion system. J. Diff. Equ. 61(2), 208249.
[19]van der Ploeg, H. & Doelman, A. (2005) Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations. Indiana Univ. Math. J. 54(5), 12191301.
[20]Veerman, F.Breathing pulses in singularly perturbed reaction-diffusion systems. Nonlinearity 28(7), 22112246.
[21]Ward, M. J. & Wei, J. (2003a) Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model. European J. Appl. Math. 14(6), 677711.
[22]Ward, M. J. & Wei, J. (2003b) Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model. J. Nonlinear Sci. 13(2), 209264.
[23]Wei, J. (1999) On single interior spike solutions of the Gierer-Meinhardt system: uniqueness and spectrum estimates. European J. Appl. Math. 10(4), 353378.
[24]Wei, J. & Winter, M. (2001) Spikes for the two-dimensional Gierer-Meinhardt system: the weak coupling case. J. Nonlinear Sci. 11(6), 415458.
[25]Wei, J. & Winter, M. (2007) Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R1. Methods Appl. Anal. 14(2), 119163.
[26]Wei, J. & Winter, M. (2014) Mathematical Aspects of Pattern Formation in Biological Systems, Vol. 189. Applied Mathematical Sciences. Springer, London.

Keywords

MSC classification

Hopf bifurcation from spike solutions for the weak coupling Gierer–Meinhardt system

  • DANIEL GOMEZ (a1), LINFENG MEI (a2) and JUNCHENG WEI (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.