Skip to main content Accessibility help

Heterogeneity formation within biofilm systems



Biofilms, and collections of embedded microbial communities, present structural heterogeneities with functional consequences for important processes, such as transport. The origin of such structures has been unclear. Here, we propose that they can arise as a consequence of diffusive transport limitation. To illustrate, a model allowing internal heterogeneity is developed. Linear analysis is applied to a simplified version of the model suggesting that heterogeneity forms on (or below) the active layer length, a length scale that may not be suitable for homogenization, with non-trivial implications for system scale properties such as reduction in system-wide diffusive transport efficiency. Numerics suggest that the simplified model provides useful insight into behaviour of the full model. We then show examples based on microcolony formation in host domains and argue that internal heterogeneity can be related to community function.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Heterogeneity formation within biofilm systems
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Heterogeneity formation within biofilm systems
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Heterogeneity formation within biofilm systems
      Available formats



Hide All

† The authors acknowledge funding provided for this project by NSF Award Nos. 1517100 and 1720226, and NIH Award No. R01GM109452.



Hide All
[1] Anguige, K., King, J. R. & Ward, J. P. (2005) Modelling antibiotic- and quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J. Math. Biol. 51, 557594.
[2] Aristotelous, A. C., Karakashian, O. A. & Wise, S. M. (2013) A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient non-linear multigrid solver. DCDS-B 18, 22112238.
[3] Aristotelous, A. C., Karakashian, O. A. & Wise, S. M. (2015) Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source. IMA J. Numer. Anal. 35, 11671198.
[4] Aristotelous, A. C. & Haider, M. A. (2014) Use of hybrid discrete cellular models for identification of macroscopic nutrient loss in reaction–diffusion models of tissues. Int. J. Numer. Method Biomed. Eng. 30, 767780.
[5] Aristotelous, A. C., Klapper, I., Grabovsky, Y., Pabst, B., Pitts, B. & Stewart, P. S. (2015) Diffusive transport through a model host-biofilm system. Phys. Rev. E 92, 022703.
[6] Aristotelous, A. C. & Papanicolaou, N. C. (2016) A discontinuous Galerkin method for unsteady two-dimensional convective flows. In: American Institute of Physics (AIP) Conference Proceedings, Varna, Bulgaria, Vol. 1773, 110002.
[7] Arnold, D. N., Brezzi, F., Cockburn, B. & Marini, L. D. (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 17491779.
[8] Bernstein, H. C., Beam, J. P., Kozubal, M. A., Carlson, R. P. & Inskeep, W. P. (2013) In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats. Environ. Microbiol. 15, 23602370.
[9] Bjarnsholt, T., Jensen, P. Ø., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B., Pressler, T., Givskov, M. & Høiby, N. (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547558.
[10] Bjarnsholt, T., Alhede, M., Alhede, M., Eickhardt-Sørensen, S. R., Moser, C., Kühl, M., Jensen, Ø. P. & Høiby, N. (2013) The in vivo biofilm. Trends Microbiol. 21, 466474.
[11] Bramble, J. H. (2003) Multigrid Methods, Research Notes in Mathematics Series, Chapman and Hall/CRC, London.
[12] Brenner, S. C. & Sung, L. Y. (2006) Multigrid algorithms for C0 interior penalty methods. SIAM J. Numer. Anal. 44, 199223.
[13] Cogan, N. C. (2008) Two-fluid model of biofilm disinfection. Bull. Math. Biol. 70, 800819.
[14] Cogan, N. G., Cortez, R. & Fauci, L. (2005) Modeling physiological resistance in bacterial biofilms. Bull. Math. Biol. 67 831853.
[15] Cogan, N. G. & Keener, J. P. (2004) The role of the biofilm matrix in structural development. Math. Med. Biol. 21, 147166.
[16] Coufort, C., Derlon, N., Ochoa-Chaves, J., Line, A. & Paul, E. (2007) Cohesion and detachment in biofilm systems for different electron acceptor and donors. Water Sci. Technol. 55, 421428.
[17] Di Pietro, D. A. & Ern, A. (2012) Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Berlin.
[18] Dockery, J. D. & Klapper, I. (2002) Finger formation in biofilms. SIAM J. Appl. Math. 62, 853869.
[19] Eberl, H. J., Parker, D. F. & Van Loosdrecht, M. C. M. (2001) A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3, 161175.
[20] Eberl, H. J. & Sudarsan, R. (2008) Exposure of biofilms to slow flow fields: The convective contribution to growth and disinfection. J. Theor. Biol. 253, 788807.
[21] Efendiev, M. A., Demaret, L., Lasser, R. & Eberl, H. J. (2008) Analysis and simulation of a meso-scale model of diffusive resistance of bacterial biofilms to penetration of antibiotics. Adv. Math. Sci. Appl. 18, 269304.
[22] Galy, O., Latour-Lambert, P., Zrelli, K., Ghigo, J.-M., Beloin, C. & Henry, W. (2012) Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys. J. 103, 14001408.
[23] Hopf, H. W., Hunt, T. K., West, J. M., Blomquist, P., Goodson, W. H. III, Jensen, J. A., Jonsson, K., Paty, P. B., Rabkin, J. M., Upton, R. A., von Smitten, R. & Whitney, J. D. (1997) Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch. Surg. 132, 9971004.
[24] James, G. A., Zhao, A. G., Usui, M., Underwood, R. A., Nguyen, H., Beyenal, H., Pulcini, E.d., Hunt, A. A., Bernstein, H. C., Fleckman, P., Olerud, J., Williamson, K., Franklin, M. J. & Stewart, P. S. (2016) Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair Regen. 24, 373383.
[25] Klapper, I. (2013) Productivity and equilibrium in simple biofilm models. Bull. Math. Biol. 74, 29172934.
[26] Klapper, I. & Dockery, J. (2006) Role of cohesion in the material description of biofilms. Phys. Rev. E 74, 031902.
[27] Klapper, I. & Dockery, J. (2010) Mathematical description of microbial biofilms. SIAM Rev. 52, 221265.
[28] Klapper, I., Dockery, J. & Smith, H. (2014) Niche partitioning along an environmental gradient. SIAM J. Appl. Math. 74, 15111534.
[29] Lehner, B. A. E., Schmieden, D. T. & Meyer, A. S. (2017) A straightforward approach for 3D bacterial printing. ACS Synth. Biol. 6, 11241130.
[30] Lewandowski, L. (2000) MIC and biofilm heterogeneity. Proc. Corros., NACE-400, 1–7.
[31] Mitri, S., Clarke, E. & Foster, K. R. (2016) Resource limitation drives spatial organization in microbial groups. ISME J. 10, 14711482.
[32] Nadell, C. D., Drescher, K. & Foster, K. R. (2016) Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589600.
[33] Picioreanu, C., van Loosdrecht, M. C. & Heijnen, J. J. (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: A two-dimensional modeling study. Biotechnol. Bioeng. 69, 504515.
[34] Rivière, B. (2008) Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, SIAM, Philadelphia.
[35] Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. (2017) 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804, DOI: 10.1126/sciadv.aao6804.
[36] Schobert, M. & Tielen, P. (2010) Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol. 5, 603621.
[37] SønderholmKoren, K. Koren, K., Wangpraseurt, D., Jensen, P. Ø., Kolpen, M., Kragh, K. N., Bjarnsholt, T. & Kühl, (2018) Tools for studying growth patterns and chemical dynamics of aggregated Pseudomonas aeruginosa exposed to different electron acceptors in an alginate bead model. npj Biofilms Microbiomes 4, art. no. 3.
[38] Stewart, P. S. (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292, 107113.
[39] Stewart, P. S. & Franklin, M. J. (2008) Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199210.
[40] Stewart, P. S. & Raquepas, J. B. (1995) Implications of reaction-diffusion theory for disinfection of microbial biofilms by reactive antimicrobial agents. Chem. Eng. Sci. 50, 30993104.
[41] Szomolay, B., Klapper, I. & Dindos, M. (2010) Analysis of adaptive response to dosing protocols for biofilm control. SIAM J. Appl. Math. 70, 31753202.
[42] Szomolay, B., Klapper, I., Dockery, J. & Stewart, P. S. (2005) Adaptive responses to antimicrobial agents in biofilms. Environ. Microbiol. 7, 11861191.
[43] Vemaganti, K. (2007) Discontinuous Galerkin methods for periodic boundary value problems. Num. Methods Partial Differ. Equat. 23, 587596.
[44] Zhang, Z., Nadezhina, E. & Wilkinson, K. J. (2011) Quantifying diffusion in a biofilm of Streptococcus mutans. Antimicrob. Agents Chemother. 55, 10751081.


Heterogeneity formation within biofilm systems



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed