Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T11:19:47.390Z Has data issue: false hasContentIssue false

The existence of multiple solutions for a Ginzburg–Landau type model of superconductivity

Published online by Cambridge University Press:  26 September 2008

S. P. Hastings
Affiliation:
Department of Mathematics and Statistics, University of Pittsburgh, 301 Thackray Hall, Pittsburgh, PA 15260, USA
M. K. Kwong
Affiliation:
Argonne National Laboratory.
W. C. Troy
Affiliation:
Department of Mathematics and Statistics, University of Pittsburgh, 301 Thackray Hall, Pittsburgh, PA 15260, USA

Abstract

We study a system of two second-order differential equations with cubic nonlinearities which model a film of superconductor material subjected to a tangential magnetic field. We verify some recent conjectures of one of the authors about multiplicity of solutions. We show that for an appropriate range of parameter values the relevant boundary value problem has at least two symmetric solutions. It is also proved that a second range of parameters exists for which there are three symmetric solutions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ginzburg, V. L. & Landau, L. D. (1950). On the theory of superconductivity. Zh. Eksperim. i. Theor. Fiz. 20, 10641082 (English translation: in Men of Physics (Landau, L. D., Ed.), Harr, Pergamon, Oxford, 1965, 138167).Google Scholar
[2] Marcus, P. (1964). Exact solutions of the Ginzburg–Landau equations for slabs in tangential magnetic fields. Rev. Modern Physics, 294299.CrossRefGoogle Scholar
[3] Chapman, S. J., Howison, S. D. & Ockendon, J. R. (1992). Macroscopic models for superconductivity. SIAM Rev. 34, 529560.CrossRefGoogle Scholar
[4] Kwong, M. K. (1995). On the one-dimensional Ginzburg–Landau BVPs. J. Differential and Integral Equations, 8 (6), 13951406.Google Scholar
[5] Yang, Y. (1990). The Ginzburg–Landau equations for a superconducting film and the Meissner effect. J. Math. Phy. 31, 5.CrossRefGoogle Scholar
[6] Yang, Y. (1990). Boundary value problems of the Ginzburg–Landau equations. Proc. Roy. Soc. Edin. 114A, 355365.CrossRefGoogle Scholar
[7] Odeh, F. (1967). Existence and bifurcation theorems for the Ginzburg–Landau equations. J. Math. Phys. 8, 4351.CrossRefGoogle Scholar
[8] Seydel, R. (1988). From equilibrium to chaos; Practical bifurcation and stability analysis. Elsevier.Google Scholar
[9] Seydel, R. (1983). Branch switching in bifurcation problems in ordinary differential equations. Numer. Math. 41, 93116.CrossRefGoogle Scholar
[10] Wang, S. & Yang, Y. (1992). Symmetric superconducting states in thin films. SIAM J. Appl. Math. 52, 614629.CrossRefGoogle Scholar
[11] Abrikosov, A. (1957). On the magnetic properties of superconductors of the second type. Zh. Eksperim. i Teor. Fiz. (Soviet Phys.–JETP) 32, 14421452.Google Scholar
[12] Abrikosov, A. (1988). Fundamentals of the Theory of Metals, North-Holland, Amsterdam.Google Scholar
[13] Bolley, C. & Helffer, B. (1996). Rigorous results for the G.L. equations associated to a superconducting film in the weak k limit. Reviews in Math. Physics 8, 4383.Google Scholar
[14] Bolley, C. (1992). Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation. Methods Mathematiques et Analyse Numerique 26 (2), 235287.Google Scholar
[15] Bolley, C. & Helffer, B. (1993). An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Ann. Inst. Henri Poincaré, Phys. Théorique 58 (2), 189233.Google Scholar
[16] Bolley, C. & Helffer, B. (1993). Rigorous results on G.L. models in a film submitted to an exterior parallel magnetic field. Preprint Ecole Centrale de Nantes.Google Scholar