Skip to main content Accessibility help

Elastic waves in layered media: Two-scale homogenization approach

  • V. V. SHELUKHIN (a1) and A. E. ISAKOV (a1)


Using the two-scale convergence approach, we derive equations which govern transversal time-harmonic waves through a layered medium taking the form of a poroelastic composite saturated with a viscous fluid. To improve convergence, we construct a corrector. We study how wave speed and attenuation time depend on porosity and frequency. We prove that the Darcy permeability and the acoustic permeability in the Biot equations do not coincide.



Hide All
[1]Aki, K. & Richards, P. (1980) Quantitative Seismology: Theory and Methods, W.H. Freean and Co., San Francisco.
[2]Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 32, 14821518.
[3]Amirat, Y. & Shelukhin, V. (2008) Electroosmosis law via homogenization of electrolyte flow equations in porous media. J. Math. Anal. Appl. 342 (1), 12271245.
[4]Auriault, J.-L. (1997) In: Homogenization and Porous Media, Interdisciplinary Applied Mathematics, Chapter 8. Poroelastic media. Hornung, U. (Ed.). Springer, Berlin, pp. 163182.
[5]Biot, M. A. (1955) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. II. High frequency range. J. Acoust. Soc. Am. 28, 168191.
[6]Biot, M. A. (1962) Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 14821498.
[7]Berryman, J. G. (1980) Confirmation of Biot's theory. Appl. Phys. Lett. 37, 382384.
[8]Brekhovskikh, L. M. (1960) Waves in Layered Media, Academic Press, New York.
[9]Burridge, R. & Keller, J. B. (1981) Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70, 11401146.
[10]Conca, C. (1985) Numerical results on the homogenization of Stokes and Navier–Stokes equations modelling a class of problems from fluid mechanics. Comput. Methods Appl. Mech. Eng. 53 (3), 223258.
[11]Gilbert, R. P. & Mikelic, A. (2000) Homogenizing the acoustic properties of the seabed: Part I. Nonlinear Anal. 40, 185212.
[12]Jyothi, N. V. N., Prasanna, M., Prabha, S., Seetha Ramaiah, P., Srawan, G. & Sakarkar, S. N. (2009) Microencapsulation techniques, factors influencing encapsulation efficiency: A review. Internet J. Nanotechnol. 3 (1).
[13]Kennett, B. L. N. (1983) Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge.
[14]Levy, T. (1979) Propagation of waves in a fluid-saturated porous elastic solid. Int. J. Eng. Sci. 17, 10051014.
[15]Lukkassen, D., Nguetseng, G. & Wall, P. (2002) Two-scale convergence. Int. J. Pure Appl. Math. 2 (1), 3586.
[16]Nguetseng, G. (1989) A general convergence result for a functional related to the theory of homogenization. Math. Anal. 20, 608623.
[17]Phona, T. J. (1980) Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett. 36, 259261.
[18]Sanchez-Palencia, E. (1980) Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, Springer, New York.
[19]Shelukhin, V., Yeltsov, I. & Paranichev, I. (2011) The electrokinetic cross-coupling coefficient: Two-scale homogenization approach. World J. Mech. 1 (1), 127136.
[20]Tsvakin, I. (1995) Seismic Wave Fields in Layered Isotropic Media, Samizdat Press, USA.


Elastic waves in layered media: Two-scale homogenization approach

  • V. V. SHELUKHIN (a1) and A. E. ISAKOV (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed