Published online by Cambridge University Press: 01 February 2002
A leader is to be elected from n people using the following algorithm. Each person flips a coin. Those people who wind up with tails (which occurs with probability p, 0 < p < 1) move on to the next stage. Those with heads are eliminated. Let Hn denote the number of stages needed until there is a single winner. We analyze the moments and the probability distribution of Hn. In the symmetric model we have an unbiased coin with p = 1/2; in the asymmetric model p ≠ 1/2. We analyze these models asymptotically, for n → ∞, using a variety of analytical and numerical approaches. This leads to simple derivations of some existing results, as well as some new results for the asymmetric case. Our analysis makes some assumptions about the forms of various asymptotic expansions as well as their asymptotic matching.