Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-j5sqr Total loading time: 0.362 Render date: 2022-09-27T19:10:13.355Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Parametric approach to promote a divergence-free flow in the image-based motion estimation with application to bioirrigation

Published online by Cambridge University Press:  15 June 2022

NARATIP SANTITISSADEEKORN
Affiliation:
Department of Mathematics, University of Surrey, Guildford, UK email: n.santitissadeekorn@surrey.ac.uk
CHRISTOF MEILE
Affiliation:
Department of Marine Sciences, University of Georgia, Athens, GA, USA email: cmeile@uga.edu
ERIK BOLLT
Affiliation:
Electrical and Computer Engineering and the Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, NY, USA email: ebollt@clarkson.edu
GEORGE WALDBUSSER
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA email: waldbuss@coas.oregonstate.edu

Abstract

Flow fields are determined from image sequences obtained in an experiment in which benthic macrofauna, Arenicola marina, causes water flow and the images depict the distribution of a tracer that is carried with the flow. The experimental setup is such that flow is largely two-dimensional, with a localised region where the Arenicola resides, from which flow originates. Here, we propose a novel parametric framework that quantifies such flow that is dominant along the image plane. We adopt a Bayesian framework so that we can impart certain physical constraints on parameters into the estimation process via prior distribution. The primary aim is to approximate the mean of the posterior distribution to present the parameter estimate via Markov Chain Monte Carlo. We demonstrate that the results obtained from the proposed method provide more realistic flows (in terms of divergence magnitude) than those computed from classical approaches such as the multi-resolution Horn–Schunk method. This highlights the usefulness of our approach if motion is largely constrained to the image plane with localised fluid sources.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basnayake, R. (2014) Inverse Problems for Image Processing of Spatiotemporal Dynamical Systems. PhD thesis, Clarkson University.Google Scholar
Batchelor, G. (2000) An Introduction to Fluid Dynamics . Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK.Google Scholar
Beauchemin, S. & Barron, J. (1995) The computation of optical flow. ACM Comput. Surv. (CSUR) 27(3), 433466.CrossRefGoogle Scholar
Bemis, K., Lowell, R. & Farough, A. (2012) Diffuse flow on and around hydrothermal vents at mid-ocean ridges. Oceanography 25(1), 182191.CrossRefGoogle Scholar
Black, M. & Anandan, P. (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Understanding 63(1), 75104.CrossRefGoogle Scholar
Boetius, A. & Wenzhoefer, F. (2013) Seafloor oxygen consumption fulled by methane from cold seeps. Nature Geosci. 6, 725734.CrossRefGoogle Scholar
Bourdreau, B. (1998) Mean mixed depth of sediments: the wherefore and the why. Limnol. Oceanogr. 43, 524526.CrossRefGoogle Scholar
Chada, N., Iglesias, M., Roininen, L. & Stuart, A. (2018) Parameterizations for ensemble Kalman inversion. Inverse Probl. 34(5), 055009.CrossRefGoogle Scholar
Chantas, G., Gkamas, T. & Nikou, C. (2014) Variational-Bayes optical flow. J. Math. Imaging Vis. 50(3), 199213.CrossRefGoogle Scholar
Cohen, I. & Herlin, I. (1996) Optical flow and phase portrait methods for environmental satellite image sequences. In European Conference on Computer Vision, vol. 1065, Springer, pp. 141150.CrossRefGoogle Scholar
Cohen, I. & Herling, I. (1999) Nonuniform multiresolution method for optical flow and phase portrait models: environmental applications. Int. J. Compt. Vis. 33(1), 2949.CrossRefGoogle Scholar
Corpetti, T., Heitz, D., Arroyo, G., Mémin, E. & Santa-Cruz, A. (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 8097.CrossRefGoogle Scholar
Cullbertson, C., Jacobson, S. & Michael Ramsey, J. (2002) Diffusion coefficient mesurements in microfluidic devices. Talanta 56, 365373.CrossRefGoogle Scholar
Du Clos, K. (2014) Visualizing subsurface burrowing by the polychaete Alitta virens with particle image velocimetry. Limnol. Oceanogr. Methods 12(10), 703712.CrossRefGoogle Scholar
Emerick, A. & Reynolds, A. (2013) Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325350.CrossRefGoogle Scholar
Forster, S., Glud, R., Gundersen, J. & Huettel, M. (1999) In situ study of bromide tracer and oxygen flux in coastal sediments. Estuarine Coastal Shelf Sci. 49(6), 813827.CrossRefGoogle Scholar
Fortun, D., Bouthemy, P. & Kervrann, C. (2015) Optical flow modeling and computation: a survey. Comput. Vis. Image Understanding 134, 121.CrossRefGoogle Scholar
Gelman, A. & Rubin, D. (1992) Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457472.CrossRefGoogle Scholar
Hastings, W. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97109.CrossRefGoogle Scholar
Heitz, D., Mémin, E. & Schnörr, C. (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369393.CrossRefGoogle Scholar
Horn, B. & Schunck, B. (1981) Determining optical flow. Artif. Intell. 17(1–3), 185203.CrossRefGoogle Scholar
Kaza, S. (2012) Quantification of Bioirrigation Using Image Analysis. Master’s thesis, UGA.Google Scholar
Lambert, B. (2018) A Student‘s Guide to Bayesian Statistics, Sage, London, UK.Google Scholar
Lucas, B. & Kanade, T. (1981) An iterative image registration technique with an application to stereo vision. In 7th Intl Joint Conference on Artificial Intelligence, pp. 121130.Google Scholar
Luttman, A., Bollt, E., Basnayake, R., Kramer, S. & Tufillaro, N. (2013) A framework for estimating potential fluid flow from digital imagery. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033134.CrossRefGoogle ScholarPubMed
Marcello, J., Eugenio, F. & Marques, F. (2007) Methodology for the estimation of ocean surface currents using region maching and differential algorithms. In IEEE Interantional Geoscience and Remote Sensing Symposium, pp. 882885.Google Scholar
McCane, B., Novins, K., Crannitch, D. & Galvin, B. (2001) On benchmarking optical flow. Comput. Vis. Image Understanding 84(1), 126143.CrossRefGoogle Scholar
McCormack, D. L. (2019) Parameter Estimation and Inverse Problems for Reactive Transport Models in Bioirrigated Sediments. PhD thesis, University of Surrey.Google Scholar
Meile, C. & Cappellen, P. (2003) Global estimates of enhanced solute transport in marine sediments. Limnol. Oceanogr. 48(2), 777786.CrossRefGoogle Scholar
Meile, C., Koretsky, C. & Cappellen, P. (2001) Quantifying bioirrigation in aquatic sediments: an inverse modeling approach. Limnol. Oceanogr. 46(1), 164177.CrossRefGoogle Scholar
Meysman, F., Galaktionov, O., Gribsholt, B. & Middelburg, J. (2006) Bio-irrigation in permeable sediments: an assessment of model complexity. J. Mar. Res. 64(4), 589627.CrossRefGoogle Scholar
Meysman, F., Galaktionov, O., Gribsholt, B. & Middelburg, J. (2006) Bioirrigation in permeable sediments: advective pore-water transport induced by burrow ventilation. Limnol. Oceanogr. 51(1), 142156.CrossRefGoogle Scholar
Plummer, M. (2015) Cuts in bayesian graphical models. Stat. Comput. 25, 3743.CrossRefGoogle Scholar
Polerecky, L., Volkerborn, N. & Stief, P. (2006) High temporal resolution oxygen imaging in bioirrigated sediments. Environ. Sci. Technol. 40(18), 57635769.CrossRefGoogle ScholarPubMed
Riisgård, H. & Banta, G. (1998) Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of current knowledge. Vie Milieu 48(4), 243257.Google Scholar
Riisgård, H., Berntsen, I. & Tarp, B. (1996) The lugworm (Arenicola marina) pump: characteristics, modelling and energy cost. Mar. Ecol. Progr. Ser. 138, 149156.Google Scholar
Ruhnau, P., Kohlberger, T., Schnörr, C. & Nobach, H. (2005) Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38(1), 2132.CrossRefGoogle Scholar
Sakov, P., Haussaire, J. & Bocquet, M. (2017) An iterative ensemble Kalman filter in the presence of additive model error. Q. J. R. Meteorol. Soc. 144(713), 12971309.CrossRefGoogle Scholar
Santitissadeekorn, N. & Bollt, E. (2007) The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: vector fields and transport barriers from movies. Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023126.CrossRefGoogle ScholarPubMed
Santos, I., Eyre, B. & Huettel, M. (2012) The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine Coastal Shelf Sci. 98, 115.CrossRefGoogle Scholar
Shum, K. (1992) Wave-induced advective transport below a rippled water-sediment interface. J. Geophys. Res. 97(C1), 789808.CrossRefGoogle Scholar
Simoncelli, E. & Adelson, E. (1991) Computing Optical Flow Distributions Using Spatio-temporal Filters. Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology.Google Scholar
Simoncelli, E. & Adelson, E. (1991) Computing Optical Flow Distributions Using Spatio-temporal Filters. Citeseer.Google Scholar
Solan, M., Ward, E.R., White, E.L., Hibberd, E.E., Cassidy, C., Schuster, J.M., Hale, R. & Godbold, J.A. (2019) Worldwide measurements of bioturbation intensity, ventilation rate, and the mixing depth of marine sediments. Sci. Data 6(58), 16.CrossRefGoogle ScholarPubMed
Sun, J., Fernando, J. & Bollt, E. (2018) Bayesian optical flow with uncertainty quantification. Inverse Probl. 34(10), 105008.CrossRefGoogle Scholar
Timmerman, K., Banta, G. & Glud, R.N. (2006) Linking arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments. J. Mar. Res. 64(6), 915938.CrossRefGoogle Scholar
Volkenborn, N., Hedtkamp, S., van Beusekom, J. & Reise, K. (2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuarine Coastal Shelf Sci. 74(1–2), 331343.CrossRefGoogle Scholar
Volkenborn, N., Polerecky, L., Wethey, D. & Woodin, S. (2010) Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina . Limnol. Oceanography 55(3), 12311247.CrossRefGoogle Scholar
Volkenborn, N., Woodin, S., Wethey, D. & Polereck, L. (2016) Reference Module in Earth Systems and Environmental Sciences, chapter Bioirrigation in Marine Sediments. Elsevier.Google Scholar
Waldbusser, G. & Marinelli, R. (2006) Macrofaunal modification of porewater advection: role of species function, species interaction, and kinetics. Mar. Ecol. Progr. Ser. 311, 217231.CrossRefGoogle Scholar
William, K. (2007) Digital image processing, 4th ed., Wiley-Interscience, New Jersey, USA.Google Scholar
Wohlgemuth, S., Taylor, A. & Grieshaber, M. (2002) Ventilatory and metabolic responses to hypoxia and sulphide in the lugworm arenicola marina (l.). J. Exp. Biol. 203, 31773188.CrossRefGoogle Scholar
Woodin, S.A. & Wethey, D.S. (2009) Arenicolid behaviors: similarity of arenicola marina and abarenicola pacifica. Zoosymposia 2, 447456.CrossRefGoogle Scholar
Woodin, S.A., Wethey, D.S. & Volkenborn, N. (2009) Infernal hydraulic ecosystem engineers: cast of characters and impacts. Integr. Comp. Biol. 50, 176187.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Parametric approach to promote a divergence-free flow in the image-based motion estimation with application to bioirrigation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Parametric approach to promote a divergence-free flow in the image-based motion estimation with application to bioirrigation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Parametric approach to promote a divergence-free flow in the image-based motion estimation with application to bioirrigation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *