Skip to main content Accessibility help

Pharmacokinetic-based total intravenous anaesthesia using remifentanil and propofol for surgical myocardial revascularization

  • F. Guarracino (a1), D. Penzo (a1), D. De Cosmo (a1), A. Vardanega (a1) and R. De Stefani (a1)...



Background and objective: We investigated the following aspects of pharmacokinetic-guided total intravenous anaesthesia with remifentanil and propofol in patients undergoing surgical myocardial revascularization: anaesthetic efficacy, haemodynamic effects, impact on extubation of the trachea and analgesia after operation.

Methods: Thirty-two patients undergoing on-pump coronary bypass surgery received intravenous anaesthesia with remifentanil and propofol. Both drugs were dosed and titrated based on computer-assisted pharmacokinetic models to maintain constant plasma concentrations. The propofol target plasma concentration was 1.2 μg mL−1 throughout the procedure. A remifentanil target plasma concentration of 8 ng mL−1 was achieved over 2 min for induction. After tracheal intubation, the opioid plasma concentration was reduced to 4 ng mL−1, and then titrated up to 8 ng mL−1 during surgery. Postoperative analgesia was managed with remifentanil infusion until 4 h after tracheal extubation, and a continuous infusion of tramadol was started 1 h before the remifentanil was stopped.

Results: After induction of anaesthesia, heart rate (−20%) and cardiac index (−6%) decreased significantly. No hypotensive episodes (mean arterial pressure <60 mmHg) occurred. Intraoperative haemodynamics were stable. Three cases of myocardial ischaemia were detected: two by transoesophageal echocardiography and one with ST-segment monitoring. The duration of postoperative mechanical ventilation of the lungs was 95 ± 13 min and the time to extubation was 150 ± 18 min. Postoperative analgesia was satisfactory in all patients.

Conclusions: Pharmacokinetic-based total intravenous anaesthesia with remifentanil and propofol provides adequate anaesthesia during coronary surgery with cardiopulmonary bypass and allows safe early extubation after operation.


Corresponding author

Correspondence to: Fabio Guarracino, Cardiac Anaesthesia and ICU, Umberto I Hospital, Via Circonvallazione 50, I-30171 Venezia-Mestre, Italy. E-mail:; Tel: +39 41 2607215; Fax: +39 41 2607590


Hide All


Lunn JK, Stanley TH, Eisele J, Webster L, Woodward A. High-dose fentanyl anesthesia for coronary artery surgery. Anesth Analg 1979; 58: 390395.
Sebel PS, Bovill JG, Boekhorst RAA, Rog N. Cardiovascular effects of high-dose fentanyl anaesthesia. Acta Anaesthesiol Scand 1982; 26: 308315.
Wynands JE, Townsend GE, Wong P, Whalley DG, Srikant CB, Patel YC. Blood pressure response and plasma fentanyl concentrations during high- and very high-dose fentanyl anesthesia for coronary artery surgery. Anesth Analg 1983; 62: 661665.
Hilgenberg JC. Intraoperative awareness during high-dose fentanyl–oxygen anesthesia. Anesthesiology 1981; 54: 341343.
Caspi J, Klausner JM, Safadi T, Amar R, Rozin RR, Merin G. Delayed respiratory depression following fentanyl anesthesia for cardiac surgery. Crit Care Med 1988; 16: 238240.
De Lange S, Stanley TH, Boscoe MJ. Alfentanil–oxygen anaesthesia for coronary artery surgery. Br J Anaesth 1981; 53: 12911296.
Phillips AS, McMurray TJ, Mirakhur RK, Gibson FM, Elliott P. Propofol–fentanyl anaesthesia in cardiac surgery: a comparison in patients with good and impaired left ventricular function. Anaesthesia 1993; 48: 661663.
Bell J, Sartain J, Wilkinson GA, Sherry KM. Propofol and fentanyl anaesthesia for patients with low cardiac output state undergoing cardiac surgery: comparison with high-dose fentanyl anaesthesia. Br J Anaesth 1994; 73: 162166.
Roekaerts PM, Gerrits HJ, Timmerman BE, de Lange S. Continuous infusions of alfentanil and propofol for coronary artery surgery. J Cardiothorac Vasc Anesth 1995; 9: 362367.
D'Attelis N, Nicolas-Robin A, Delayance S, Carpentier A, Baron JF. Early extubation after mitral valve surgery: a target-controlled infusion of propofol and low-dose sufentanil. J Cardiothorac Vasc Anesth 1997; 11: 467473.
Olivier P, Sirieix D, Dassier P, D'Attellis N, Baron JF. Continuous infusion of remifentanil and target-controlled infusion of propofol for patients undergoing cardiac surgery: a new approach for scheduled early extubation. J Cardiothorac Vasc Anesth 2000; 14: 2935.
Vuyk J. Pharmacokinetic and pharmacodynamic interactions between opioids and propofol. J Clin Anesth 1997; 9: 23S26S.
Rosow CE. An overview of remifentanil. Anesth Analg 1999; 89: S1S3.
Shafer SL, Gregg KM. Algorithm to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm 1992; 20: 147169.
Minto CF, Schnider TW, Egan TD, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 1997; 86: 1023.
Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 1997; 86: 2433.
Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67: 4148.
Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia 1998; 53 (Suppl 1): 1321.
Gepts E. Pharmacokinetic concepts for TCI anaesthesia. Anaesthesia 1998; 53 (Suppl 1): 412.
Bigatello LM, Coppo A. Intraoperative monitoring of myocardial ischemia. Minerva Anestesiol 2001; 67: 314319.


Pharmacokinetic-based total intravenous anaesthesia using remifentanil and propofol for surgical myocardial revascularization

  • F. Guarracino (a1), D. Penzo (a1), D. De Cosmo (a1), A. Vardanega (a1) and R. De Stefani (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed