Skip to main content Accessibility help

Fibrinolysis or hypercoagulation during radical prostatectomy? An evaluation of thrombelastographic parameters and standard laboratory tests

  • S. Ziegler (a1), A. Ortu (a1), C. Reale (a2), R. Proietti (a3), E. Mondello (a4), R. Tufano (a5), P. di Benedetto (a6) and G. Fanelli (a1)...


Background and objectives

Radical prostatectomy is at high risk for intraoperative and postoperative bleeding due to surgical trauma, release of urokinase and tissue type plasminogen activator. We conducted this prospective, observational multi-centre study to assess the degree of systemic fibrinolysis or hypercoagulation in the perioperative period. We studied serial changes in standard laboratory values and in thrombelastographic (TEG®; Haemoscope Corporation, Skokie, IL, USA) parameters including lysis at 30 and 60 min (LY-30, LY-60), alpha-angle (α) and maximum amplitude.


In all, 49 patients undergoing radical retropubic prostatectomy in five Italian University Hospitals were included. Blood samples were taken before surgery (T1), at the removal of the prostate (T2), 4 h after surgery (T3) and then 1 day after surgery (T4). Native blood samples were analysed using a thrombelastograph Haemoscope 5000 (Haemoscope Corporation).


We did not see any relevant activation of fibrinolysis during any stage. Intraoperatively, we showed even more activated blood coagulation with consumption of fibrinogen and a reduced TEG® percentage clot lysis. Only at the first postoperative sample point we saw a trend towards a more fibrinolytic state indicated by increasing partial thromboplastin time, LY-30 and LY-60 values, and a peak of the fibrin degradation product D-dimers. This is consistent with a normal reaction to the hypercoagulable state before and is unlikely to be due to an intraoperative tissue type plasminogen activator release. We found no evidence of an uncontrolled activation of fibrinolysis on the day after surgery. On the contrary, α-values which indicate the rate of clot formation and which increase during hypercoagulation showed the tendency to rise slightly compared with the preoperative value.


Neither standard coagulation parameters nor TEG® values showed any significant activation of fibrinolysis or of hypercoagulation in the preoperative period. Nevertheless, hypercoagulation seems to have a substantial clinical impact as it has been shown that cardiovascular complications and pulmonary embolism were the most common causes of death after retropubic prostatectomy.


Corresponding author

Department of Anesthesiology and Critical Care, Azienda Ospedaliera di Parma, Università degli Studi di Parma, Parma, Italy. E-mail:; Tel: +39 0521 703567; Fax: +39 0521 984735


Hide All
1.Alibhai, SM, Klotz, LH. A systemic review of randomized trials in localized prostate cancer. Can J Urol 2004; 11: 21102117.
2.Schraudenbach, P, Bermejo, CE. Management of the complications of radical prostatectomy. Curr Urol Rep 2007; 8: 197202.
3.Gratzke, C, Schlenker, B, Seitz, M et al. Complications and early postoperative outcome after open prostatectomy in patients with benign prostatic enlargement: results of a prospective multicenter study. J Urol 2007; 177: 14191422.
4.Nielsen, JD, Gram, J, Holm-Nielsen, A, Fabrin, K, Jespersen, J. Post-operative blood loss after transurethral prostatectomy is dependent on in situ fibrinolysis. Br J Urol 1997; 80: 889893.
5.Mannucci, PM. Hemostatic drugs. N Engl J Med 1998; 339: 245253.
6.Miller, RA, May, MW, Hendry, WF, Whitfield, HN, Wickham, JE. The prevention of secondary haemorrhage after prostatectomy: the value of antifibrinolytic therapy. Br J Urol 1989; 52: 2628.
7.Ward, MG, Richards, B. Complications of antifibrinolysis therapy after prostatectomy. Br J Urol 1979; 51: 211212.
8.Andersson, L. Antifibrinolytic therapy in genitourinary tract surgery. J Clin Pathol Suppl (R Coll Pathol) 1980; 14: 6062.
9.Mangano, DT, Tudor, JC, Dietzel, C. The risk associated with aprotinin in cardiac surgery. N Engl J Med 2006; 354: 353365.
10.American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology 2006; 105: 198208.
11.Fennerty, A. Venous thromboembolic disease and cancer. Postgrad Med J 2006; 82: 642648.
12.Bell, CRW, Cox, DJA, Murdock, PJ et al. Thrombelastographic evaluation of coagulation in transurethral prostatectomy. Br J Urol 1996; 78: 737741.
13.Bell, CRW, Murdock, PJ, Pasi, KJ, Morgan, RJ. Thrombotic risk factors associated with transurethral prostatectomy. BJU Int 1999; 83: 984989.
14.American College of Chest Physicians. Proceedings of the seventh ACCP Conference on antithrombotic and thrombolytic therapy: evidence-based guidelines. Chest 2004; 126: 172S696S.
15.Koya, MP, Manoharan, M, Kim, S, Soloway, MS. Venous thromboembolism in radical prostatectomy: is heparinoid prophylaxis warranted? BJU Int 2005; 96: 10191021.
16.Zhu, JP, Davidsen, MB, Meyhoff, HH. Aspirin, a silent risk factor in urology. Scand J Urol Nephrol 1995; 29: 369374.
17.Zuckerman, L, Cohen, E, Vagher, JP, Woodward, E, Caprini, JA. Comparison of thromboelastography with common coagulation tests. Thromb Haemost 1981; 46: 752756.
18.Kang, YG, Martin, DJ, Marquez, J et al. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg 1985; 64: 888896.
19.Spiess, BD, Gillies, BS, Chandler, W, Verrier, E. Changes in transfusion therapy and reexploration rate after institution of a blood management program in cardiac surgical patients. J Cardiothorac Vasc Anesth 1995; 9: 168173.
20.Shore-Lesserson, L, Manspeizer, HE, DePerio, M, Francis, S, Vela-Cantos, F, Ergin, MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg 1999; 88: 312319.
21.Samama, CM, Ozier, Y. Near-patient testing of haemostasis in the operating theatre: an approach to appropriate use of blood in surgery. Vox Sang 2003; 84: 251255.
22.Leonard, SA, Walsh, M, Lydon, A, O’Hare, B, Shorten, GD. Evaluation of the effects of levobupivacaine on clotting and fibrinolysis using thromboelastography. Eur J Anaesthesiol 2000; 17: 373378.
23.Ruttmann, TG, James, MF, Viljoen, JF. Haemodilution induces a hypercoagulable state. Br J Anaesth 1996; 76: 412414.
24.Ruttmann, TG, Lemmens, HJM, Malott, KA, Brock-Utne, JG. The haemodilution enhanced onset of coagulation as measured by the thrombelastogram is transient. Eur J Anaesthesiol 2006; 23: 574579.
25.Davydov, L, Cheng, JW. Tenecteplase: a review. Clin Ther 2001; 23: 982997.
26.von Hundelshausen, B, Stemberger, A, Jelen-Esselborn, S et al. Blood coagulation and fibrinolysis in prostate surgery. Fortschr Med 1992; 110: 126130.
27.Alibhai, SMH, Leach, M, Tomlinson, G. Examining the location and cause of death within 30 days of radical prostatectomy. BJU Int 2005; 95: 541544.
28.Lepor, H, Nieder, AM, Ferrandino, MN. Intraoperative and postoperative complications of radical retro pubic prostatectomy in a consecutive series of 1000 cases. J Urol 2001; 166: 17291733.
29.Leandri, P, Rossignol, G, Gautier, JR, Ramon, J. Radical retropubic prostatectomy: morbidity and quality of life. Experience with 620 consecutive cases. J Urol 1992; 147: 883887.
30.Cisek, LJ, Walsh, PC. Thromboembolic complications following radical retropubic prostatectomy: influence of external sequential pneumatic compression devices. Urology 1993; 42: 406408.
31.Klein, S, Slaughter, T, Vail, P et al. Thromboelastography as a perioperative measure of anticoagulation resulting from low molecular weight heparin: a comparison with anti-Xa concentrations. Anesth Analg 2000; 91: 10911095.
32.Orlikowski, CEP, Payne, AJ, Moodley, J, Rocke, DA. Thrombelastography after aspirin ingestion in pregnant and non-pregnant subjects. Br J Anaesth 1992; 69: 159161.


Related content

Powered by UNSILO

Fibrinolysis or hypercoagulation during radical prostatectomy? An evaluation of thrombelastographic parameters and standard laboratory tests

  • S. Ziegler (a1), A. Ortu (a1), C. Reale (a2), R. Proietti (a3), E. Mondello (a4), R. Tufano (a5), P. di Benedetto (a6) and G. Fanelli (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.