Skip to main content Accessibility help
×
Home

Endogenous nitric oxide reduces the efficacy of the endothelin system to maintain blood pressure during high epidural anaesthesia in conscious dogs

  • C. Beck (a1), L. A. Schwarte (a2), A. W. Schindler (a3), T. W. L. Scheeren (a3) and O. Picker (a1)...

Summary

Background and objective

During high epidural anaesthesia, endothelin only contributes minimally to blood pressure stabilization. This phenomenon could result from the inhibitory action of nitric oxide on the endothelin system. To clarify this, we studied the interaction between nitric oxide and endothelin during high epidural anaesthesia in conscious dogs, in comparison to the interaction of nitric oxide and vasopressin.

Methods

Six animals were used in 45 individual experiments randomly arranged as follows: N-ω-nitro-arginine-methylester 0.3–10 mg kg−1 under physiological conditions or during high epidural anaesthesia (lidocaine 1%) and N-ω-nitro-arginine-methylester (l-NAME) 0.3–10 mg kg−1 after preceding endothelin (Tezosentan®) or vasopressin (β-mercapto-β,β-cyclo-penta-methylene-propionyl-O-Me-Tyr-Arg-vasopressin) receptor blockade under physiological conditions or during high epidural anaesthesia. During control experiments normal saline was injected either intravenously (n = 5) or into the epidural space (n = 4).

Results

N-ω-nitro-arginine-methylester increased mean arterial pressure dose-dependently in all groups. However, this effect was substantially reduced in the presence of the endothelin receptor antagonist compared to N-ω-nitro-arginine-methylester alone, both under control conditions (7 ± 3 vs. 21 ± 3 mmHg; P < 0.05) and during high epidural anaesthesia (17 ± 3 vs. 30 ± 1 mmHg; P < 0.05). Blockade of vasopressin showed no similar relationship with N-ω-nitro-arginine-methylester.

Conclusions

The diminished increase in mean arterial pressure after injection of N-ω-nitro-arginine-methylester only during endothelin receptor blockade indicates that endogenous nitric oxide inhibits the action of endothelin during high epidural anaesthesia and might thus explain the reduced efficacy of endothelin in maintaining blood pressure during high epidural anaesthesia.

Copyright

Corresponding author

Correspondence to: Olaf Picker, Department of Anaesthesiology, University Hospital of Duesseldorf, Moorenstr. 5, D-40225 Duesseldorf, Germany. E-mail: olaf.picker@uni-duesseldorf.de; Tel: +49 211 811 8101; Fax: +49 211 811 6253

References

Hide All
1.Peters, J, Schlaghecke, R, Thouet, H, Arndt, JO. Endogenous vasopressin supports blood pressure and prevents severe hypotension during epidural anesthesia in conscious dogs. Anesthesiology 1990; 73: 694702.
2.Hopf, H-B, Schlaghecke, R, Peters, J. Sympathetic neural blockade by thoracic epidural anesthesia suppresses renin release in response to arterial hypotension. Anesthesiology 1994; 80: 992999.
3.Weber, C, Schmitt, R, Birnboeck, H et al. . Pharmacokinetics and pharmacodynamics of the endothelin-receptor antagonist bosentan in healthy human subjects. Clin Pharmacol Therapeut 1996; 60: 124137.
4.Munter, K, Ehmke, H, Kirchengast, H. Maintenance of blood pressure in normotensive dogs by endothelin. Am J Physiol 1999; 45: H1022H1027.
5.Notarius, CF, Erice, F, Stewart, D, Magder, S. Effect of baroreceptor activation and systemic hypotension on plasma endothelin 1 and neuropeptide Y. Can J Physiol Pharmacol 1995; 73: 11361143.
6.Cernacek, P, Stewart, DJ, Levy, M. Plasma endothelin-1 response to acute hypotension induced by vasodilating agents. Can J Physiol Pharmacol 1994; 72: 985991.
7.Picker, O, Schindler, AW, Scheeren, TWL. Endogenous endothelin and vasopressin support blood pressure during epidural anesthesia in conscious dogs. Anesth Analg 2001; 93: 15801586.
8.Banting, JD, Friberg, P, Adams, MA. Acute hypertension after nitric oxide synthase inhibition is mediated primarily by increased endothelin vasoconstriction. J Hypertension 1996; 14: 975981.
9.Qiu, C, Engels, K, Baylis, C. Endothelin modulates the pressor actions of acute systemic nitric oxide blockade. J Am Soc Nephrol 1995; 6: 14761481.
10.Tagawa, T, Imaizumi, T, Endo, T et al. . Vasodilatory effect of arginine vasopressin is mediated by nitric oxide in human forearm vessels. J Clin Invest 1993; 92: 14831490.
11.Yamada, K, Nakayama, M, Nakano, H, Mimura, N, Yoshida, S. Endothelium-dependent vasorelaxation evoked by desmopressin and involvement of nitric oxide in rat aorta. J Physiol 1993; 264: E203E207.
12.Liard, JF. l-NAME antagonizes vasopressin V2-induced vasodilation in dogs. Am J Physiol 1994; 266: H99H106.
13.Pucci, ML, Lin, L, Nasjletti, A. Pressor and renal vasoconstrictor effects of NG-nitro-l-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin, prostanoids and vasopressin. J Pharmacol Exp Ther 1992; 261 (1): 240245.
14.Picker, O, Wietasch, G, Scheeren, TW, Arndt, JO. Determination of total blood volume by indicator dilution: a comparison of mean transit time and mass conservation principle. Intens Care Med 2001; 27: 767774.
15.Evans, HE, Christensen, GC. Millar's Anatomy of the Dog. W.B. Saunders: Philadelphia, 1979.
16.Takamura, M, Parent, R, Cernacek, P, Lavallee, M. Influence of dual ET(A)/ET(B)-receptor blockade on coronary responses to treadmill exercise in dogs. J Appl Physiol 2000; 89: 20412048.
17.Kruszynski, M, Lammek, B, Manning, M et al. . [1-Beta-mercapto-beta, beta-cyclopentamethylenepropionic acid), 2-(O- methyl)tyrosine] argine–vasopressin and [1-beta-mercapto-beta, beta-cyclopentamethylenepropionic acid)] argine–vasopressine, two highly potent antagonists of the vasopressor response to arginine–vasopressin. J Med Chem 1980; 23: 364368.
18.Tabrizi-Fard, M, Fung, H. Pharmacocinetics, plasma protein binding and urinary excretion of N-omega-nitro-l-arginine in rats. Br J Pharmacol 1994; 111: 394396.
19.Sandgaard, NC, Bie, P. Natriuretic effect of non-pressor doses of endothelin-1 in conscious dogs. J Physiol (London) 1996; 494: 809818.
20.Howl, J, Wheatley, M. Molecular pharmacology of V1a vasopressin receptors. Gen Pharmacol 1995; 26: 11431152.
21.Peters, J, Kousoulis, L, Arndt, JO. Effects of segmental thoracic extradural analgesia on sympathetic block in conscious dogs. Br J Anaesth 1989; 63: 470476.
22.Hogan, QH, Stadnicka, A, Stekiel, TA, Bosnjak, ZJ, Kampine, JP. Effects of epidural and systemic lidocaine on sympathetic activity and mesenteric circulation in rabbits. Anaesthesiology 1993; 79: 12501260.
23.Pollard, BJ. Cardiac arrest during spinal anesthesia: common mechanisms and strategies for prevention. Anesth Analg 2002; 92: 252256.
24.Hasser, EM, Bishop, VS. Neurogenic and humoral factors maintaining arterial pressure in conscious dogs. Am J Physiol 1988; 255: R693R698.
25.Thrasher, TN, Chen, HG, Keil, LC. Arterial baroreceptors control plasma vasopressin responses to graded hypotension in conscious dogs. Am J Physiol Regul Integr Comp Physiol 2000; 278: R469R475.
26.Moncada, S, Palmer, RM, Higgs, EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109142.
27.Hirata, Y, Hayakawa, H, Kakoki, M et al. . Receptor subtype for vasopressin-induced release of nitric oxide from rat kidney. Hypertension 1997; 29: 5864.
28.Hasser, EM, Cunningham, JT, Sullivan, MJ, Curtis, KS, Blaine, EH, Hay, M. Area postrema and sympathetic nervous system effects of vasopressin and angiotensin II. Clin Exp Pharmacol Physiol 2000; 27: 432436.
29.Boulanger, C, Luscher, TF. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 1990; 85: 587590.
30.Kleinbongard, P, Dejam, A, Lauer, T et al. . Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Rad Biol Med 2003; 35: 790796.
31.Goertz, A, Heinrich, H, Seeling, W. Baroreflex control of heart rate during high thoracic epidural anaesthesia. A randomised clinical trial on anaesthetised humans. Anaesthesia 1992; 47: 984987.
32.Picker, O, Scheeren, TW, Arndt, JO. Nitric oxide synthases in vagal neurons are crucial for the regulation of heart rate in awake dogs. Basic Res Cardiol 2001; 96: 395404.

Keywords

Endogenous nitric oxide reduces the efficacy of the endothelin system to maintain blood pressure during high epidural anaesthesia in conscious dogs

  • C. Beck (a1), L. A. Schwarte (a2), A. W. Schindler (a3), T. W. L. Scheeren (a3) and O. Picker (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed