Skip to main content Accessibility help
×
Home

Endocrine stress response and inflammatory activation during CABG surgery. A randomized trial comparing remifentanil infusion to intermittent fentanyl

  • M. Winterhalter (a1), K. Brandl (a1), N. Rahe-Meyer (a1), A. Osthaus (a1), H. Hecker (a2), C. Hagl (a3), H. A. Adams (a1) and S. Piepenbrock (a1)...

Summary

Background and objective

Our aim was to compare a continuous infusion of remifentanil with intermittent boluses of fentanyl as regards the perioperative hormonal stress response and inflammatory activation in coronary artery bypass graft patients under sevoflurane-based anaesthesia.

Methods

In all, 42 patients undergoing coronary artery bypass grafting with cardiopulmonary bypass were prospectively randomized to a fentanyl group (n = 21, total fentanyl dose 2.6 ± 0.3 mg), or a remifentanil group (n = 21, infusion rate 0.25 μg kg−1 min−1). Haemodynamics, plasma levels of epinephrine, norepinephrine, antidiuretic hormone, adrenocorticotropic hormone, cortisol, complement activation (C3a, C5b-9), interleukin (IL)-6, IL-8 and tumour necrosis factor-α were measured at T1: baseline, T2: intubation, T3: sternotomy, T4: 30 min on cardiopulmonary bypass, T5: end of surgery and T6: 8 h postoperatively. Troponin T and creatine kinase-MB were measured postoperatively.

Results

Patients in the remifentanil group were extubated significantly earlier than fentanyl patients (240 ± 182 min vs. 418 ± 212 min, P = 0.006). Stress hormones 30 min after start of cardiopulmonary bypass showed higher values in the fentanyl group compared to the remifentanil group (antidiuretic hormone (ADH): 39.94 ± 30.98 vs. 11.7 ± 22.8 pg mL−1, P = 0.002; adrenocorticotropic hormone: 111.5 ± 116.8 vs. 21.81 ± 24.71 pg mL−1, P = 0.01; cortisol 185 ± 86 vs. 131 ± 82 ng mL−1, P = 0.04). The interleukins were significantly higher at some perioperative time points in the fentanyl group compared to the remifentanil group (tumour necrosis factor: T5: 3.57 vs. 2.37; IL-6: T5: 4.62 vs. 3.73; and IL-8: T5: 4.43 vs. 2.65 and T6: 2.61 vs. 1.13). However, cardiopulmonary bypass times and aortic cross-clamp times were longer in the fentanyl group, which may to some extent account for the differences.

Conclusions

The perioperative endocrine stress response was attenuated in patients supplemented with continuous remifentanil infusion as compared to intermittent fentanyl.

Copyright

Corresponding author

Correspondence to: Michael Winterhalter, Department of Anaesthesiology, Hannover Medical School, Carl-NeubergStraße 1, 30625 Hannover, Germany. E-mail: Winterhalter.Michael@mh-hannover.de; Tel: +49-511-532-3139; Fax: +49-511-532-3642

References

Hide All
1.Wallace, AW. Is it time to get on the fast track or stay on the slow track? Anesthesiology 2003; 99: 774.
2.Slogoff, S, Keats, AS. Randomized trial of primary anesthetic agents on outcome of coronary artery bypass operations. Anesthesiology 1989; 70: 179188.
3.Weale, NK, Rogers, CA, Cooper, R, Nolan, J, Wolf, AR. Effect of remifentanil infusion rate on stress response to the pre-bypass phase of paediatric cardiac surgery. Br J Anaesth 2004; 92: 187194.
4.Bell, G, Dickson, U, Arana, A, Robinson, D, Marshall, C, Morton, N. Remifentanil vs fentanyl/morphine for pain and stress control during pediatric cardiac surgery. Paediatr Anaesth 2004; 14: 856860.
5.Matsumoto, ED, Margulis, V, Tunc, L et al. Cytokine response to surgical stress: comparison of pure laparoscopic, hand-assisted laparoscopic, and open nephrectomy. J Endourol 2005; 19: 11401145.
6.Molina, PE. Neurobiology of the stress response. Contribution of the sympathetic nervous system to the neuroimmune axis in traumatic injury. Shock 2005; 24: 310.
7.Gold, SM, Mohr, DC, Huitinga, I, Flachenecker, P, Sternberg, EM, Heesen, C. The role of stress-response systems for the pathogenesis and progression of MS. Trends Immunol 2005; 26: 644652.
8.Rokutan, K, Morita, K, Masuda, K et al. Gene expression profiling in peripheral blood leukocytes as a new approach for assessment of human stress response. J Med Invest 2005; 52: 137144.
9.Brix-Christensen, V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children. Acta Anaesthesiol Scand 2001; 45: 671679.
10.Ibrahim, AE, Taraday, JK, Kharasch, ED. Bispectral index monitoring during sedation with sevoflurane, midazolam, and propofol. Anesthesiology 2001; 95: 11511159.
11.Ziegler, MG, Lake, CR, Kopin, IJ. Plasma noradrenaline increases with age. Nature 1976 ; 261: 333335.
12.Kuchel, O, Buu, NT. Circadian variations of free and sulfoconjungated catecholamines in normal subjects. Endocr Res 1985; 11: 1725.
13.Saar, N, Gordon, RD. Variability of plasma catecholamine levels: age, duration of posture and time of day. Br J Clin Pharmacol 1979; 8: 353358.
14.El-Etr, AA, Glisson, SN, Balasaraswathi, K. Endocrine changes during anesthesia and cardiopulmonary bypass. Clev Clin Q 1981; 48: 132138.
15.Tan, CK, Glisson, SN, El-Etr, AA, Ramakrishnaiah, KB. Levels of circulating norepinephrine and epinephrine before, during and after cardiopulmonary bypass in man. J Thorac Cardiovasc Surg 1976; 71: 928931.
16.Reves, JG, Karp, RB, Buttner, EE et al. Neuronal and adrenomedullary catecholamine release in response to cardiopulmonary bypass in man. Circulation 1982; 66: 4955.
17.Laffey, JG, Boylan, JF, Cheng, DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology 2002; 97: 215252.
18.Rady, MY, Ryan, T, Starr, NJ. Early onset of acute pulmonary dysfunction after cardiovascular surgery: risk factors and clinical outcome. Crit Care Med 1997; 25: 18311839.
19.Besedovsky, HO, del Rey, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 1996; 17: 64102.
20.Wan, S, LeClerc, JL, Vincent, JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 1997; 112: 676692.
21.Ito, H, Hamano, K, Gohra, H et al. Relationship between respiratory distress and cytokine response after cardiopulmonary bypass. Surg Today 1997; 27: 220225.
22.Guggenberger, H, Schroeder, TH, Vonthein, R, Dieterich, HJ, Shernan, SK, Eltzschig, HK. Remifentanil or sufentanil for coronary surgery: comparison of postoperative respiratory impairment. Eur J Anaesthesiol 2006; 23: 832840.
23.Yokoyama, M, Itano, Y, Katayama, H et al. The effects of continuous epidural anesthesia and analgesia on stress response and immune function in patients undergoing radical esophagectomy. Anesth Analg 2005; 101: 15211527.
24.Soulika, AM, Khan, MM, Hattori, T et al. Inhibition of heparin/protamine complex-induced complement activation by Compstatin in baboons. Clin Immunol 2000; 96: 212221.
25.Seghaye, MC, Duchateau, J, Grabitz, RG et al. Complement activation during cardiopulmonary bypass in infants and children. Relation to postoperative multiple system organ failure. J Thorac Cardiovasc Surg 1993; 106: 978987.
26.Kirklin, JK, Westaby, S, Blackstone, EH, Kirklin, JW, Chenoweth, DE, Pacifico, AD. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1983; 86: 845857.
27.Fitch, JC, Rollins, S, Matis, L et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 1999; 100: 24992506.
28.Voss, EM, Sharkey, SW, Gernet, AE et al. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium. Arch Pathol Lab Med 1995; 119: 799806.
29.Wan, S, Marchant, A, DeSmet, JM et al. Human cytokine responses to cardiac transplantation and coronary artery bypass grafting. J Thorac Cardiovasc Surg 1996; 111: 469477.

Keywords

Endocrine stress response and inflammatory activation during CABG surgery. A randomized trial comparing remifentanil infusion to intermittent fentanyl

  • M. Winterhalter (a1), K. Brandl (a1), N. Rahe-Meyer (a1), A. Osthaus (a1), H. Hecker (a2), C. Hagl (a3), H. A. Adams (a1) and S. Piepenbrock (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed