Skip to main content Accessibility help
×
Home

The efficacy of nicorandil, calcium chloride and nitroglycerin in treatment of ropivacaine-induced cardiotoxicity

  • J. M. Porter (a1), F. Markos (a2), H. M. Snow (a2) and G. D. Shorten (a1)

Extract

Summary

Background and objective: The amide-linked local anaesthetics, bupivacaine and ropivacaine, can cause depression of cardiac contractility and dysrhythmias. In a previous study, we observed decreased contractility and ST segment depression following ropivacaine administration in anaesthetized dogs. The efficacy of intravenous (i.v.) and intracoronary nicorandil (30 and 100 μg kg−1), i.v. nitroglycerin (glyceryl trinitrate) (5 μg kg−1) and calcium chloride (1, 2 and 4 mmol) in reversing the cardiotoxic effects of intracoronary ropivacaine were studied following the administration of intracoronary ropivacaine.

Methods: Six dogs were studied. The dogs were anaesthetized with i.v. pentobarbital (30 mg kg−1). A left-sided thoracotomy was performed and the left circumflex coronary was cannulated. For each dog, the dose of ropivacaine was identified, which produced measurable cardiotoxicity. In each case, ropivacaine was followed by one of the three resuscitation drugs. The effects of each resuscitation drug on ST segments and left ventricular contractility (dP/dt) produced by ropivacaine alone were compared with those produced by ropivacaine followed by each of the three resuscitation drugs using Fisher's exact test.

Results: The doses of ropivacaine required to produce depression of left ventricular dP/dt and ST segments ranged from 1 to 8 mg. Ropivacaine-induced depression of left ventricular contractility (dP/dt) was more rapidly and completely reversed by calcium chloride than by either nitroglycerin or nicorandil (P = 0.008).

Conclusions: Calcium chloride may be effective in the treatment of inadvertent intravascular administration of amide local anaesthetic agents.

Copyright

Corresponding author

Correspondence to: Jennifer Porter, Department of Anaesthesia, Longford/Westmeath General Hospital, Mullingar, Co Westmeath, Ireland. E-mail: jennyporter@esatclear.ie; Tel: +353 44 40221

References

Hide All

References

Albright GA. Cardiac arrest following regional anaesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51: 285287.
Reiz S, Haggmark G, Nath S. Cardiotoxicity of ropivacaine – a new amide local anaesthetic agent. Acta Anaesthesiol Scand 1989; 33: 9398.
De Jong RH, Davis NL. Treating bupivacaine arrhythmias: preliminary report. Reg Anesth 1981; 6: 99103.
Kotelko DM, Shnider SM, Dailey PA, et al. Bupivacaine-induced cardiac arrhythmias in sheep. Anesthesiology 1984; 60: 1018.
Moller R, Covino GG. Cardiac electrophysiological properties of bupivacaine and lidocaine compared to those of ropivacaine, a new amide local anesthetic. Anesthesiology 1990; 72: 322329.
Clarkson CW, Hondeghem LM. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology 1985; 62: 392405.
De La Cousaye JE, Masse C, Bassoul BP, Eledjam JJ, Gagnol JP, Sasine A. Bupivacaine-induced slow-inward current inhibition: a voltage clamp study on frog atrial fibres. Can J Anaesth 1990; 37: 819822.
Porter JM, Markos F, Snow HM, Shorten GD. Effects of respiratory and metabolic pH changes and hypoxia on ropivacaine-induced cardiotoxicity in dogs. Br J Anaesth 2000; 84: 9294.
Castle NA. Bupivacaine inhibits the transient outward K+ current but not the inward rectifier in rat myocytes. J Pharmacol Exper Therap 1990; 255: 10381046.
Courtney KR, Kendig JJ. Bupivacaine is an effective potassium channel blocker in the heart. Biochim Biophys Acta 1988; 939: 163166.
Sanchez-Chapula J. Effects of bupivacaine on membrane currents of guinea-pig ventricular myocytes. Eur J Pharmacol 1988; 156: 303308.
Eledjam JJ, de La Coussaye JE, Brugada J, et al. In vitro study on mechanisms of bupivacaine-induced depression of myocardial contractility. Anesth Analg 1989; 69: 732735.
Gherardini G, Samuelson U, Jernbeck J, Aberg, Sjostrand N. Comparison of vascular effects of ropivacaine and lidocaine on isolated rings of human arteries. Acta Anaesthesiol Scand 1995; 39: 765768.
Saitoh K, Hirabayashi Y, Shimizu R, Fukuda H. Amrinone is superior to epinephrine in reversing bupivacaine-induced cardiovascular depression in sevoflurane-anesthetized dogs. Anesthesiology 1995; 83: 127133.
De La Coussaye JE, Eledjam JJ, Peray P, et al. Mechanisms of the putative cardioprotective effect of hexamethonium in anesthetized dogs given a large dose of bupivacaine. Anesthesiology 1994; 80: 595605.
Kasten GW, Martin ST. Successful cardiovascular resuscitation after massive intravenous bupivacaine overdosage in anesthetized dogs. Anesth Analg 1985; 64: 491497.
De La Coussaye, Eledjam JJ, Peray P, et al. Lemakalim, a potassium channel agonist, reverses electrophysiological impairments induced by a large dose of bupivacaine in anaesthetized dogs. Br J Anaesth 1993; 71: 534539.
Purcell H, Mulcahy D, Fox K. The clinical profile of nicorandil. Rev Contemp Pharmacother 1993; 4: 215220.
Surtapranata H, MacLeod D. Nicorandil and cardiovascular performance in patients with coronary artery disease. J Cardiovasc Pharmacol 1992; 20: S45S51.
Tanz RD, Heskett T, Loehning RW, Fairfax CA. Comparative cardiotoxicity of bupivacaine and lidocaine in the isolated perfused mammalian heart. Anesth Analg 1984; 63: 549556.

Keywords

The efficacy of nicorandil, calcium chloride and nitroglycerin in treatment of ropivacaine-induced cardiotoxicity

  • J. M. Porter (a1), F. Markos (a2), H. M. Snow (a2) and G. D. Shorten (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed