Skip to main content Accessibility help
×
Home

Effect of catheter design on tracheal pressures during tracheal gas insufflation

  • I. R. Dyer (a1), M. Esmail (a2), G. Findlay (a3), J. S. Mecklenburgh (a4) and J. Dingley (a1)...

Extract

Summary

Background and objective: This study investigated the distribution of pressures within a model trachea, produced by five different tracheal gas insufflation devices. The aim was to suggest a suitable design of a tracheal gas insufflation device for clinical use.

Methods: Each device was tested using insufflation flow rates of 5 and 10 L min−1. For each flow rate, the pressure within the tracheal model was measured at 33 fixed points.

Results: The Boussignac tracheal tube produced the most even pressure distribution, while a reverse-flow catheter produced pressure changes of the smallest magnitude.

Conclusions: We suggest that catheters producing the lowest pressure changes are likely to be safer for clinical use.

Copyright

Corresponding author

Correspondence to: John Dingley, Department of Anaesthesia, Morriston Hospital, Swansea, SA6 6NL, UK. E-mail: jdingley98@aol.com. Tel: +44 (0)1792 703280; Fax: +44 (0)1792 703278

References

Hide All

References

Burke WC, Nahum A, Ravenscraft SA, et al. Modes of tracheal gas insufflation: Comparison of continuous and phase-specific gas injection in normal dogs. Am Rev Respir Dis 1993; 148: 562568.
Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Int Care Med 1990; 16: 372377.
Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994; 22: 15681578.
Kuo PH, Wu HD, Yu CJ, Yang SC, Lai YL, Yang PC. Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia. Am J Respir Crit Care Med 1996; 154: 612616.
Sznajder JI, Nahum A, Crawford G, Pollak ER, Schumacker PT, Wood LDH. Alveolar pressure inhomogeneity and gas exchange during constant-flow ventilation in dogs. J Appl Physiol 1989; 67: 14891494.
Delgado E, Hete B, Hoffman LA, Tasota FJ, Pinsky MR. Effects of continuous, expiratory, reverse and bi-directional tracheal gas insufflation in conjunction with a flow relief valve on delivered tidal volume, total positive end-expiratory pressure, and carbon dioxide elimination: a bench study. Respir Care 2001; 46: 577585.
Necati GA. Measuring equipment and transducers. In: Hucho WH, ed. Aerodynamics of Road Vehicles. London, UK: Butterworths, 1987: 443444.
Dassieu G, Brochard L, Agudze E, Patkaï J, Janaud J-C, Danan C. Continuous tracheal gas insufflation enables a volume reduction strategy in hyaline membrane disease: technical aspects and clinical results. Int Care Med 1998; 24: 10761082.
Trawöger R, Kolobow T, Cereda M, et al. Clearance of mucus from endotracheal tubes during intratracheal pulmonary ventilation. Anesthesiology 1997; 86: 13671374.
Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ. Effect of catheter flow direction on CO2 removal during tracheal gas insufflation in dogs. J Appl Physiol 1993; 75: 12381246.
Ravenscraft SA, Shapiro RS, Nahum A, et al. Tracheal gas insufflation: Catheter effectiveness determined by expiratory flush volume. Am J Respir Crit Care Med 1996; 153: 18171824.
Imanaka H, Kirmse M, Mang H, Hess D, Kacmarek RM. Expiratory phase tracheal gas insufflation and pressure control in sheep with permissive hypercapnia. Am J Respir Crit Care Med 1999; 159: 4954.
Kacmarek RM. Complications of tracheal gas insufflation. Respir Care 2001; 46: 167176.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed